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About These Notes

e These lecture notes contain the material presented on the board.
e They are designed to guide you through the lectures content.
o While I primarily follow Bartelmann’s script, these notes are complementary because:

Some arguments are restructured, and I have selectively chosen the topics.
Most computations are detailed step-by-step, leaving little to the imagination.
Mathematical terms modified in the computations are marked with arrows for clarity.

Instead of lengthy explanations, I use concise "slogans” to emphasize key points.

A

The detailed discussion is provided during the lectures, where I am very "talkative”.

o If you find any error, kindly let me know.
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Figure 1: Some notation: take care in how I write variations and derivatives.
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UNIVERSITAT

Nice to meet you!

SEIT 1386

Me:
Matteo Maturi, Madonna di Campiglio (Dolomites)
Center for Astronomy & Institute for Theoretical Physics
Cosmology, gravitational lensing, galaxy clusters
Involved in Euclid, KiDS, DESC-LSST, J-PAS

Contact:
your own tutor
gozzini@thphys.uni-heidelberg.de (Francesco, head tutor)
maturi@uni-heidelberg.de (Matteo, lecturer)

Lectures:
From October 16th to January 30"
Thursday 14:15-16:00 (INF308/HS 2)
Friday 14:15-16:00 (INF308/HS 2

Website, Uebungen:

https://uebungen.physik.uni-heidelberg.de/vorlesung/20252/2105

- Enroll!

- Literature

- Lecture notes

- Additional material (slides, pdf files,...)
- Tutorials / Exercises

- All possible info

Matteo Maturi Back to Indezx 6
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A collapsing Universe

Let’s return to the basic equation (Eq.[2Z8):

Lectures style

R= —% (2.18)

= In presence, mostly black board The first integration of this equation can be written in the form

- | will skip trivial steps... 2=V, @19)

nes bUty (al II) Steps In |eCtu re nOteS where C is an integration constant. You can verify this by taking the d/dr of Eq. (Z.19):

- | will start super slow, | will accelerate
- Recap at beginning/end of each lectures _ , _

which gives Eq. (ZI8) back. The integration constant € decides which of the three

i FEW mega I’ecapS along the Way solutions you'll get. Eq. (2.19) in fact says that the kinetic enegy equals the potential

= BOHUS VdEOS (posted Wlth delay) energy plus some constant.

2RR = — (2.20)

2GM
_GW!R
R

If we seck a collapsing solution, there will be a time #, called the “turn around time™
where the maximum R = Ry, is reached and after which the solution collapses. The
solution will be symmetric about this point in time. At this turn around time we will
have R = 0.

Let us rewrite Eq. (2.19) as

3 2GM
R=x R +C 2.21)

Since, for the recollapsing solution, we know that C < 0 and that there will be a Ry,.
for which

2GM

M ate rl aI Cosmology, WS2023/24 01b Lorentz geome|

‘ Frame transformations

- Lectures notes (What | present at the board) We deal with transformation between inertial frames

- Scripts by Bartelmann, Amendola, Schaefer S IV : :

- Books, e.g. g 3 eot PCowml (bl f condinhs H“”“JL”V““H
Cosmological Physics (John A. Peacock) . %/:o L“f:o lasemnbadl,) - affins. potnmetin K1
Modern Cosmology (S.Dodelson, F.Schmidt) d 4

Relation between frames S, 5'
X () A g P L Toschinn ot
1, S bios s d &Xfé Y% bmw@!um}m
Jerrmed b
HAQ t\Amh fF"”‘FcMM Ym}- ,:}\o (w}.\mtij {l\m«*)
b ) (U1 (e de) - Bt i L, [B20
ITCER AT Y AR €7 P N S v Ry Y b SK°
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Bureaucracy

No uni-id?
- Write to Francesco to enroll you by hand

Tutorials:
- First tutorial next week!
- The exercises will not be corrected and no mark will be given
- Itis possible to hand in exercises to get a feedback
- Discuss, discuss, discuss!!

Exam:

Written
Same style of exercises

Admission to the exam: (50% attendance + (3 points)

1) attend at least 70% of the tutorials (your presence will be registered).
If attendance < 70%, it is required to hand in 3 full exercise sheets that will be graded.

AND
2) gain 5 points by:
- 1 point: present at the black board at least 1/3 of a sheet.
- 1 point: actively participating in the discussion during the tutorials

Matteo Maturi Back to Indezx 8
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What are we going to see?

/ACDM model:

N\ — Cold Dark Matter

f

Cosmological constant Cold = non relativistic
General relativity Dark = no emission/absorbtion
Accelerated expansion Matter = particles

(+ baryons & photons)

&

S W&
Qs"’ Q\® & Q’b‘ 633\ \@\\
* &
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Why this cosmological model?

Data say so!

Cosmic Microwave Bckground
Supernovae luminosity distances
Gravitational lensing

Galaxy clusters

Galaxy clustering

Tonry et al.

Dark energy + Dark matter? 2003

or
Is gravity wrong? Riess et al.

0.2
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How do we approach it?
Homogeneity and isotropy ser13ss

SE

IsoTrROPY OF THE Cosmic
MicrowAvVE BACKGROUND

The young universe

Very uniform and smooth

DT/T =10°

Now days. « ...

Large scale structures -

Galaxy clusters

17/10/25 Matteo Maturi 7
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Let's build a model of the universe

The universe is like sandpaper: rough but homogeneous and isotropic

To describe sand paper we do not need to describe each single grain!

3 parameters are enough:
material (M), grains dimension (D), grains number density (N)

The same for the universe...

17/10/25 Matteo Maturi 8
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The ingredients of the cake

Cosmological parameters

Dynamics:
- Ho: Hubble parameter

Ingredients:
- Q; : radiation density

- Qy: barionic density
- Qq: dark matter density
- Qa: dark energy density

“Raffness”:
= 08

17/10/25 Matteo Maturi 9
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74% Dark Energy

And the roles of the game?

Matteo Maturi

Back to Indezx
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How do the ingredients interact?

The rules mastering the universe

Theory Interaction Behavior

QCD Strong 1/r’

Electroweak Weak 1/r° to 1/r7

QED Electromagnetic 1/r?

GR Gravity 1/r?

We need a long distance force acting on a neutral universe

Gravity!!

17/10/25 Matteo Maturi 10
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Typical scale

1.4 x10-*m

Matteo Maturi Back to Indezx
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Newtonian cosmology

Consider a spherical portion of the Universe

radious [ = arg

density P

mass M = /)%7‘(’[3

kQ

kinetic energy A = - init. condit.

With the previous equations we obtain:

4G a\* 8rG  k?
5 a) 3 a?

17/10/25 Matteo Maturi 11
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Relativistic cosmology

. : : : 1
Einstein's field equation 5

1r2

@) 1 (@ heinsidp)

ds® = (cdt)?® — a®(t) [

4

Ta/g = —PGaps t+ (p + pcz) Hall3 — %Qaﬁ .

Friedmann's equations

S1G kc-

3 7~

A7G ( 3p
3 P+ —=

_ 2
c“

17/10/25 Matteo Maturi 12
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GG

Ta3»
¢t T

Friedmann—Lemaitre—
Robertson—Walker metric

Universe ingredients

Newtonian

3 f
-T2 )

Matteo Maturi
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The tools to Space telescopes SiThT

-BERG
FT

explore the universe w0 &

Analytical: 8+1 ~ 10

17/10/25 Matteo Maturi 13
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Detailed content of the lectures

1) Introduction
- Special Relativity
- General Relativity

4) Structure formation
2) Uniform universe - Hydrodinamics (Continuity, Euler, Poisson)
- FLRW metric - Linear theory

- Friedmann equations - Dark matter halos
- Scalar fields - N-Body numerical simulations
- Dark energy
- Cosmological inflation 5) Current Observations
- Galaxy clustering
3) Thermal History - Cosmic Microwave Background (CMB)
- Summary of equilibrium thermodynamics - Gravitational lensing
- When reactions starts/end - Galaxy clusters
- Neutrinos decoupling (CvB) - Other probes...
- Cosmological Nucleosynthesis
- Electrons decoupling (CMB)
- Cosmic reionization

Matteo Maturi Back to Indezx 18
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Let’s discover our universe and its evolution! uNVERSITAT

ZUKUNFT
SEIT1386

’b\\c
&
O c\,\\
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0la Core concepts of special relativity
Special Relativity: the core!
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Space-time diagrams
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Some abmiguity is left: "signature" choice
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Implication of the Lorentz transforms
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Lorentz geometry

Geometric interpretation of the ct,x plane
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The metric is "hidden" in many places!
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Frame transformations

We deal with transformations between inertial frames
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Lorentz invariant quantities
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The Lorentz group
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Relativistic mechanics

— Behavejour of paticles in the space-time
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Cosmology, WS2025/26

Variational approach

— Free particle : no external forces
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Photons

» momyve fwl{kﬂo de =4t <o (Ut vol) = Pgm%/ in wefwole%mecl /

. PL.]-QM dso ozl Jdlsi—.o prop Cime on He fyyﬁkcm i z‘,bmt'wﬂa 2o |
> wzi_gj‘w oty i =l el el |
We mwot une Lomdber offine Pommefeﬂ (et T) = A
" dx” 1) (= IV T

s Az Jx/“clx‘“ﬂZmM A}\ /;ZNK Ud N o
(sob & Grvaeity) (ol

\Y/QCQM(A/)Q M)A (:S JQ&MJQ *DLQ KW\.D’W%)_M/'P‘ ?g‘ F:Q\n[‘o”\f)
(F/MF g/_P vwv/oow\e »o/engaw EMJ§ ) P
(£:7) Jphd ; e
A) The wwve/aﬁo«ﬁMLM: PP egubizo EX=C P =  |me=ol|  [E=c
?I # P ) T
2) Enang i bieed - EJ—LI =1 kv te k oY \- <
%ID-’IW(Z : =hv=hoo —.Z—:?—X - =5

\
(P)=(E/P2) = E(n2)=Be(4@) =b () = |(W)= 2 (48)=5(43)| - (55)

=

Lorentz transform of 4-frequency :

(W)= (2/\“ R) 21‘(/1 L, mm B, o) 9 9. i

.(K/"j (Z;T R’) ZT(A (T, mm T, o) >

e /\/‘N (A>9) e : ,X___K(A-Pcm) _D°P,Pﬂ* W{Lp%’}

N
~_‘| npele_ - EYN (:t’v"‘—% A'\vau; fr |-
(#=1) pres ho T 4 Ly

Exmle
-5 \D= o A _ ° \e o \A o \1 ) 3
pme KN RN R XKy

LY K- MW+0+O=%;\£(‘(—%?M©‘3) £ - L (ampom)

Matteo Maturi Back to Indezx 34



Cosmology, WS2025/26
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Appendix

Decay of particles
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Dispersion relation for massive particles
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Energy-Momentum tensor

- T)m(fdﬂ&: PD;M\_ =\3k3€6+/4"‘/ ,Q:f_ P@W\I}(‘om )(ﬂ og\mﬂzhwz@l Ioa (PV) - (E,]::'TS> - (me;LVo_\Carv\

B EL&Q/E@MJD 'ﬁ(x’“) ,ufwumma ,o/{ OU X" " " TOV(X/’) M%“WW\M“}W T
L) 26 mH’q,L %J—J (oonan.>/ olv IX/I.M‘J (Uec\'w’\z\‘oﬁ)/ 70sza¢]l_4,r-/wn3/~e/hc ?;jnl ((‘vaAaQ)
= DmoszHo/V\ /B/ﬂ\ou/fawz »?— P na/ﬂlf?/w\
T cn[-
- Somtomguioan, Actiom S=8Lo\k=5§ééé\/—-ég§ i) 152 &6~ x4 4
v 0
) o S (s )8k o of ool
’ é“zm 'Lom - DS'D };\(gj&/\;) :Sin‘o ;mquﬁ fle f)t?f\

()

~ LLML% comperves qw\'ih‘eo-. YW=0-20¢)-8x) Cﬁ/vu’l)PO’V\flf) ts o DKW\ME{ ,4 the o«g)fe/w\

__(IA?af%M_) ________________________ l/i\%/\lA e/vaof bkimoﬁﬂom WWexriel e«
i K = I (x46) % ‘/’}()( )+ €7 ,‘f(V) 394> €789 COAE R i
| doimade < any |
i m 02 3To- b (88 (2 |
i D:K bj + 3‘1 PL} E)_‘( T>N + mo(}vb <&1; PY j i
i <§$37 ) Y=0 = B(g(‘?ﬁl 50 &)e =0 me el i meeded i
i BT‘_ ¢ 5 67 J J —T Mamwfw +m«1— i
i ay\ b ;\ b r(\\? ) ({'/Lz 7Wf)lka whik i Cpﬂﬁo&v&“\ i
,—\7/*:_ é%g‘j-&_ V/i _ %n—/‘ {_Vwr &/\T‘V‘ =0 Cumeﬂvo.kwv\ @\WD
. Tﬂa]@m Ls" e[emrw,‘{m =2 EM{EX)}Q SV Voewm (OP‘:—C@.Me, L;“Pzawnpuog
Bt 5T 00| bemomotion (AR [N 0020 demomerdm comomakion

’ A/ol‘e'- wAeP«Q with MW\AO«{-UU\R_ ‘Pﬂ ~++4) x ,Qﬁlve. ond i iwgawyww:

) A/ofe,‘ ?amw:ﬁ T mHm_azmmﬁ bu l’ cam be O(AW%QJ

* Na}-o_ r /V\O WV\AﬁlA/Z_

y Aml'w-gy-mbuc wt AMYCCIF ‘T v
TP L TP 8wt A A

éﬁ%/“’zo Sl oo 0%24 (W"e e anh WW%‘% gg/[i/‘/\\)r
§M\/ 7 fm}m«mf’mc

Matteo Maturi Back to Indezx 37




Cosmology, WS2025/26 03 Energy-momentum tensor essentials

What is the meaning of T/"?
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Energy momentum tensors of a perfect relativistic fluid Fm.{u# = Mo beok comduchion, Mo V\‘mwlué
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General Relativity in a nutshell

What is general relativity for?

- generalization of special relativity to non-inertial frames
- it describes gravity as a manifestation of the curvature of spac-time

Why do we need it?

- we need a covariant theory: Lorentz invariance, retardation, ...
- Newton's gravity fails: perihelion shift, gravitational lensing, Grav. waves, time dilation, Lens-Thirring effect, ...

- Newton's gravity is "weird".. w3 = ﬂ(:: wy# q  chsrgein an electric field

ma =-ml/g I = ”"‘(,‘- => m_is associated to the same inertial phenomenon
inertial mass = gravitational "charge"

The key idea: equivalence principle

- gravity <---> non-inertial frame (Einsteil elevator)
- in local inertial frame (free fall) same tensorial expressions of special relativity (SEP)

°xX

T , 4o
? =° y=0" P#o Y£o0 1
2/ oL 7ff ﬂ\&c_ M oL.quuz)
V5 o | _
§=vy Li
- you can remove it only locally (the elevator) 2, j Iy
1 .
- carful here: analogy, not reality. in a real "grav. field" you have tydal forces! AW nelobie

- real "grav. fields" can not be eliminated everyehere simultaneously by choosing a frame
o= /) ©n

Link between an accelerated frame and the metric

— Inertial frame: Jsl=- rJE +4>(1+°)kaL+ol22

Xz en(nE) - ' mnlRE) | z= 2

— In an accelerated system :
d = X (R E)+ et (2E)

EJX = dx' co(t) + & pun(8) AL “Jla, (R E) + ‘alw{_ﬂb)sz(L
diy= dgnin(08) - X' co( N1 Rt +dylcr (R E) +ylron(28) A6

1 21, p z v \ 2
L:ls =~ c“' 4—ol>( +JE)2'+J2 > (7,704/({,0,&“69_
= [C'L_ﬁ}()(\l.;_(aﬂ-)] J[;L__J)(\’-_J\a'z_cl%lz_,_ ZJZL(?\JX\JL_ -—ZJZX'J‘a'Jé ,)/u'm(,’\gﬂe

Fowee_ L4pote — 1_0#—-4,10 (n/m‘fal)—n
= 3/\\;4)(/;["0 80" g ii Jo W&’n

- Centrifugal force [ equivalence principle] ---> locally as a gravitational field
- Mathematically: associate gravity to the metric of the space-time!
- Careful!l The metric is still Minkowski, just with a 'wierd coordinate system'
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Connecting the gravitational field to a property of the space-time

o Let's try to find the metric producing a Newtonian gravitational field
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Non-inertial frames and the geodesic equation

Generic coord. transformation between frames S, S'
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Free particle, least action principle
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Differential geometry, the language of GR
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What does the Riemann tensor describe?
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A theory of gravity build on that: GR
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Conceptual steps and summary
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Appendix

Einstein eq.s can be writte an:
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Relativistic cosmological model
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Cosmological constant as a (effective) fluid

We /wmq'a,}e M PNR A WVW\]TW\ l_w”b’t h‘ /\ bt

— z

oY
R bt A3 = LTS 4Ry - BT

lM{-e/lm,e“/\ An A pewal 4 TA"-_--—C——AX v
[ »L | [ Vad banlt M 5
oy L iy
t\): —;T__\E' 3/\0 T (g_'_'j-)?) u/‘u" +F3/"“) = é%,\:_‘i . olo/%t = "'U,_‘=*'1
— «

P T Fgﬂ\\) Ky I

= \gﬁgﬂ\\) = SA: m m}ml' J/z,vml'a .

~ meq,o_l'(vc pamune !

/Uate_ o w;t mmfﬂa/fwe P‘L(MOP& v ‘

/\ M}Oﬂ"\&{( r)ol: {it N Qve l}l&mb‘})& P o(f oL_m on I?o’)t}lavx oL £mc }‘o'wb
De MMJ)"W(:fég m‘:%mo“w(?:%w b iume. r% (9
A obaeqien. fmh;nlp/te }\:»};m nf A

' (R i anm o%ec[:ue M; t Jeriben /wmo-mwl;&c Ld\pvﬂewn. ue He wndertfined 7umlrum el (&FT)
« Vot in A amocaled ts ! /\ o A W%J@ nfoce- [ ('w‘)Jra olm_cg

—A 3 Vo.cumams (K\QWJ 0(0}6
l«\; JZWO %\ Aﬂ?lmalmaa on OLM'AVU. zvm}am\

. E@u{ we P/\,afmhm o# Vacuum
A) Tﬁ\m/mo’ti:()(ka/wmz /on?)(wmemllo
A wnmverne with "msLB&/ké\\ => m% vocouwm with Jemmka § 9
onegy m the Univee  dE< ga—lv
SV +pdV=0 : p=-kd [awr=-4|!
4’M4+Mamwc o[E+?c\\/:O é 3 P ° P g dal
2) Sa(mwx'[w lgm?&ho J volium
]/V‘ ﬁﬂeﬁ&ng‘lz«w - [oco&a M;MB?OWO'&; /;Z'w
Vo.Lamn 10 id\m\'% (MVOJ\A‘OLML " /l( o (/oc‘uoﬁ% MAVQMOM“WAJU‘L e I\)otmca/\e’ SN»«P WB\ALL 1) LM)
= wovntve by oudd twmpmxvm}um (whidh O(QP&»J o ) ) L it I/Ma«% o(e/w% in nﬂwya\a name
5 Dok app (reol the Zenonde Sl £y ore Thane Jon ik yf=Lyhesy 1)
—;\\W{ 8,..) (n&wﬁ@ 0[7\'0/‘/‘5 ﬁwvaﬁﬁw\@_ FMMU,PQL) (P\M ww\a o‘ﬂw\ven QKYPAA‘QMCQ A()

Nole. (2 Dbty deyemerle. ponometon)
\Wa MMZC{ bove A ound m&j{' % om /v\o\' °LW+MB&J s (A ol)g/w B %zﬂl: SN N gvé‘

ST

Matteo Maturi Back to Indezx 53



Cosmology, WS2025/26 05 Lambda-CDM cosmological model

P;.w'-... \R g"/\) ‘?Im’, We ?’re/},q, ?/wLyeQ/nA
& o il bomtions : INAG > w15

lhmmunaﬂ%“rymoﬂ loul'/wol' 2w*z> ;#W{h,wwg Iy\")L’ai/W\
) ﬁ\m«\a QFT P‘?""j"’"h"e’ ; Vmwb%ﬂv ontimote - Rea0t Twmﬁw?m‘

) %wm&rmfolw/\vw"lw: QA Nﬂm foo‘wa: w/&a Lc[oa?! - omedemce Pﬂ%vn

*/7(‘8' FL”}W wifl Qoubvn]'?aw\oze W%>\=RH=%E'X/ 3Gpe/h > T OEATD

Than i wha people ndobilues A with Do/)_}?—w (e o cL?/m/«Nt noobbr. ,{Zp@
g ‘ 0
/wol'm_ wunrw}/ il' Comn w:few wrl:t\ LM : awr(a) &

Iﬂ\ ,ovwawve,, Lwe\uve‘jomn 4 DE /vv»w)} Lc v@ta oeeoe. ,B‘/\ no APQQ oLof/lvoJ‘iowD ~Ne (UVv\Fo,LLL \x,lu- /\.I
Moe om szf Loten .. See "neokn P«e)&z o~ odwm&z«a\\

Matteo Maturi Back to Indezx 54



Cosmology, WS2025/26 05 Lambda-CDM cosmological model

Energy-densty evolution of the components
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Final field euquations: dynamic of the universe a(t)
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Average distance between galaxies

‘WikiCommons, author BenRG

Om=0.3,0,=0.7 ¢

5 lb 15
Billions of years from now é
Age times current Hubble parameter
H T T T T ™ 1
,’ ,"W ’I ) ’
K7 '.' ' \Q QQ" ’
... 7 ®, 4 08
' £ / Q'I
® |
‘ '3 ; P »
, Il s N.‘,' 0 6
w> /' closed ©
-~ / P ,/ ..'. - 0.4 Q A
I’ I’ \¢/ %
! ’ « "
N — , &4 0.2
II ,/ open Q".
/ ‘
S SO T I VU YOy .. — Y |
T T e GC Pa
! ’
i [ 1 1 1 1 0.2

Matteo Maturi

Back to Index

29



Cosmology, WS2025/26 05 Lambda-CDM cosmological model

Cosmological redshift
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Appendix: explicit computations
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Cosmological distances
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Luminosity distances

Cosmic distance ladder

Stellar Parallax Measurement of Cepheid Variable

Three Steps
to Measuring
the Hubble Constant
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Credit: NASA, ESA, A. Feild (STScI), and A. Riess (

46
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Figure 6.1.2: Union2 combined catalog of 557 SNIa. Here p =
ApJ..716..T12A (© AAS. Reproduced with permission). Bottom panel: residuals.

Angular diameter distance (gravitational lensing)
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Figure 1: Configuration of a strong lens system, with definition of the variables used

throughout this paper. All angles are measured with respect to the center of the lens galaxy;
f'is the angular position of the image; 4 is the angular position of the source in the absence
caled deflection angle; & is the deflection angle at the lens plane; and b

of the lens; @ is the

is the physical separation to the closest approach at the lens plane.

Volumes and populations (Galaxy Clusters)

Jee, Komatsu, Suyu
(arXiv:1410.7770)
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Figure 2: Image of B1608+656, adopted from figure 1 of [7].
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Fig. 10. Top panels: Counts of the AMICO KiDS-1000 galaxy clusters in the redshift bins adopted in the analysis (increasing from left to right).
The black dots show the measures, with the error bars corresponding to Poisson uncertainties. The blue bands display the 68% confidence levels
of the model, derived from the posterior of all the free parameters considered in the joint analysis of counts and weak lensing. Bottom panels:
Pearson residuals. The horizontal dashed grey lines show the interval between -1 and 1.
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Cosmological horizons
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Scalar fields in cosmology
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DE in the Friedmann equations
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Other Dark Energy models
(ﬂmfm% 4 De

IM T’/wwzof/ o Ocoﬁo/l p'lm o Le I)V\Ro/mogef&bub
- DMP B\mv\o%x/v\d% /QNWMAPhoM = vl 47 70

(C’—/[\ K-G 2,3 Gﬁ’—(}‘((ﬂ:o FLRW $+?>HJ7‘-§V2¢‘H-U|(¢S -5 ”'\\Ej_d)
D“’:\C_ﬁg%*ﬁgg’”&}) (34 ¢+ 6)+ 520 NIEERI

& Mm=0 : ;3§D(és3wé,¢)=-;(3ézéci>+ és(i;)z -(3H ‘{’ "“P)
/M:‘l : %&l(z/’aﬁ 8;4’) = 8'-5&284) = ézv‘q)R'_v/wQ\deXM[‘ra 6;(‘)‘0
; oy tole
-AWNWQ_ n/w@@ PQLA&LOL(O\«D 54’ , L‘IV\‘QQI\/C’ZQ % HM
Pm‘mbwl(vc /c.ﬂ:mazﬁu &(Y,6) = bl6) + 5d(x, 6 [Sél< | 84 - l}“lMLol'(DM
ol 5043060 - AT50 400134 =0
frrimgbidy Picousli Linit: 56 956 +0(81 08 =0 ek e g o U=Ant®, Ut Jleckie mnons

H=0,2=4

Pﬂ%mrzz ( N B R T T SR Koaml dipowion nelikion

/ A G=c ko nsmall ool o MQMQM:“(WJ Fontold )
velocits dw_ kAt &€ P
3‘”" BDOL& /0—5 di Krm So (52 R&km QOAae oles o M’\Mv(.?\'&l
- QA/W\"WW oM MOI' Cel//)i»?/l (mc:{' DE)
(M): (¢ = Enl'ml)okm(,wv\ vl —> MQJ\XMS, t)u.H)aL K&m MP(J wdﬁant'om N DWJ' MW =©
Q): C=¢ = UO?,,AMLO};M = Mo ‘,@,,.,}QM,.,\%’ = ﬁmmm s mmscbln
- 60'“0\—1\0&/"\\—0 on it
- A)o Q,vlo\ﬁmce 62 DE :JW)‘QMM = nuz'bg)st :yvmﬂ Ry, M
~ oy nll comdibion: U'«

& () oﬁaww be &w b aobioly Hew o&w nll wvxoL‘kov\ N . Wﬂ
bl « W = ‘P«mhw\ nupprenILs l’g\,w\g o0 33 3 e
A/ua Hre J,w)bkm% DE models ?
4) Nom- comawical {Le,éJ (U-omemee ) N/

£Uh(4, ) wawmml,;m%%hwmmd X2-L305 (Kmeh fonm) et U(bX)= X-Ud)
LT70 g=22XKky- K, p=h(d1)

L C;:l&r/—;)(l(,x; nma(e,Qo (Ml?( LUA.Q’ MA()/\ l'.r P,\AVQ C;' « ,QMA mra-4 = (/QW)I-WMS NE

B) Cou@ DE - &mm-w){m Q)(OQ\D.NFQ coun Nolhle PZ\I-(ARL-J";N I ‘P«JJ e A O
C) Some /w\oo(m?\ezl zﬂwu% "Lnu‘e/s:ex{'/m. &Wﬁ P\&ﬁa’lﬁw\ thot Lunten on Ima,z %) (mmo&('«ZOEo&m\'w»gs

Matteo Maturi Back to Indezx 78



Cosmology, WS2025/26 08 Dynamical dark energy

Coupled Dank
IM M/ Décv&vt ?e@o o (DMIPQ,Q fs /QM\% o*RUL MHWL WV'«?W}-

v

- gOle*Q/l we (‘/ALI/OO[MCQJ H&e (Ml'm-c[lov\ m i L/ ex%fy&
CIRARRAOSL4, €] = Topdetinflorme > T

- A“Mwe,ga 1 Yo cam L@«a it cl,wzcwa in The comenation fow 5
V'Ego:O , V‘Tec)% 3" , VT"’\ ~3° , 3i=o (megmh)f) i=42,2 QMOA%_W}W t\,:vw)?an. /W\e~>c|>

7@
(1) @)

d) A#act M/\cu"'m 63 o? Mokm‘\, ie il' Cauen o &r\oe xx{wg on MAo.{l'eR. : w,e_ .ﬁ&gu\ .Pma’.
4 3 QTNt, Rreplagend. | T thoce Junclo E-4 o
;+?>H <t =—&’l;‘. A
3 (gf ' P*) 4? " 25[“22 NV\O";UV\/ D—Jélll’\.DMOQ oWl fw\/m
MG 4D )=+R T, 0

- New Lo o vinmcrsemed
> axdond s ecwz( dinfomeen
> i ogpeotn o @ modilicalion & %N.'kg Vb =-4m 65(3,n) 3 8§ MJ;F,@J Poimem<q. £ (5,0)
= comic huchine fomakion, i» offted s § £ 11-dusy bz 282N, 8 20 gpasthy

covabroinlo + Lorge olen cormobonieal (lustoring, 1B S, )+ focd - S opho
4 oou[)'@vn& ok be weodh @ Wm5 wredhamirm ( Virkowo. \JJ%t‘\oQ)

)1-: Some gfwcl'ldv\u%h/wa_ omd nro-&e,

Matteo Maturi Back to Indezx 79



Cosmology, WS2025/26 08 Dynamical dark energy

S(o&n!z‘oe:‘ A mw—l'uc omrzmg
12_21 /*9;4’3\,47‘12”“1 Z—_%;Rd{’ R= Ricet oCo/@t)JL (M}:N\(WV\AM/W‘«IQ ooo\[j/w\g)
(D’/W\Z- § R) ¢ =0 ? = o[;/vvm&/\h oouYQCMS c,cmo‘b,mf ¢ > R

$+3Ho-L VY (SR & =0
8858+ conoluse offuds Fell ondy Hnccl deischive (il gl
A4S R ¢ cnvole a,%c[,) P«»,QJ u@c five mom and wze venso. (morm-minsiomal )
" " P‘Q/QJ d’(,\%llmm (lzueM \'P M\=O) \ ‘}ﬁ%‘l;) H;\Q BAQVI.*OL{OV\OQ W‘dz.
Dinect” inforoc hiom” desR
4) A}al"(m.gﬂ oe\,:.loe?AmJlmdehnf Wi;’ B [_i]= O, LR‘&: Z =2 [¢z]=2 onn% oQ\::.(oQ
2) f?\bz /W/)P(’cl}) d>-¢ mﬁwwv\el' = MMF’&/LM

3) (ovaniom! coupﬁ\)v\ i Fu m=0 He ackomin LOMR-/\ imomant (-5 52'e) >?\~IL §=1
L £7w§u0ﬂ€’m,- ls fiw\e /W\ooLJ‘Z*ul Wkﬁ M NM‘U)& : 8
Holion R = iudinedly oy d endion B ametin (o 5% - effickive & comf )

4) @mmh/vw\ comactions gemerslen puch feum = meeded ?dLn%UlonQ‘.Zoko’v\
5) ér‘_)/w\ago% . Mhws im ho'm/vé c‘(b/kcw\MU) (28 H(ca;a» fw%‘{of\'\ ,g 2:»3@}

(ﬂ«wzm Yon\hJZe fmme, L'«m nofen
e
< :g‘/:glf(m dn + SA(BN'A,;) +5(5Nﬂ’i) jo'wlom\ gE(RN_-SJJL /w\oow»ul Wo—vfjﬁa‘l' o{'.vvxu(mw] S,.(/)Sy
!
e Jobd 6-5f0 1 57087 Cormal boflmokio .
! N Cosphed
S~ RIS S Tf9) 15, Gpof) i fine. JREFIR 6R + Sy v o 5, (3700)
MM :»Jm-l’muzwwua (&,3,,)

H«ﬂo[?nwﬂ(‘ r;,yuowym«, See ad vame c»wmoeo%
SR € GpldDE € ST

Q’K’sﬂ Qaewn" tzme,mg

Matteo Maturi Back to Indezx 80



Cosmology, WS2025/26 08 Dynamical dark energy

Appendix
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Figure 6.1.3: 68.3 %, 95.4 % and 99.7 % confidence level contours on (Qw. wpg) from the SN Ta observations
(denoted as Qa7 and w in the figure) compiled in Amanullah et al. 2010ApJ...716..712A (©) AAS. Reproduced
with permission).
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Cosmological Inflation

Problems of the standard model
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How much inflation do we need? R
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The simplest inflaton model
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How do we need it to behave?
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Example of potential
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What happens to all species already present before inflation?
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Appendix

How does4>evo|ve? Eq. of motion
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End of inflation, reheating and particlescreation
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The seeds of cosmic structure formation
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Predicted power spectrum
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Thermal hystory of the universe
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Quantum statistics
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Ideal quantum gas
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| Explicit relations of the ensamble properties |
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Table 3.2: Particle

content of the Standard Model.
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Reactions and the Boltzmann eq.
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Early times
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Neutrino decoupling
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Reactions and Saha's equation
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Cosmological nucleosynthesis
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Fig. 4 The top image shows a quasar with its emission directed towards our telescopes on Earth. The space in between is filled with
galaxies and intergalactic gas that absorb the quasar light at wavelengths corresponding to atomic transitions (see the corresponding
spectrum in the bottom panel). The expansion of the Universe causes these transitions to redshift relative to each other, leading to a
forest of absorption lines at wavelengths less than the hydrogen Lye emission of the quasar. Most of these absorption lines are due
to weak hydrogen absorption. By pure chance, sometimes a large overdensity of primitive gas is intersected. This primitive gas cloud
imprints the Lyman series absorption lines of deuterium and hydrogen on the quasar spectrum, and we can use these absorption lines
to count the number of deuterium and hydrogen atoms that are in the gas cloud. In addition to deuterium and hydrogen, some heavy
elements (i.e. ‘metals’ made by stars, such as carbon and oxygen) absorb the quasar light, allowing us to assess the pollution of this
gas since BBN.
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Fig. 7 Seven i of the (i.e. the relative number of deuterium to hydrogen atoms) of gas

clouds (blue symbols with error bars;|[Cooke et al.-. The x-axis shows the oxygen abundance, displayed on a log scale relative
to solar (i.e. -2 is one-hundredth of the number of oxygen atoms in the sun relative to hydrogen, while -3 represents one-thousandth
of the number of oxygen atoms). All seven measures are consistent with each other. The red horizontal lines represent 68 and 95 per
cent confidence interval of the weighted mean value of these seven measures. The black line shows an example model of the chemical
evolution of deuterium (van de Voort e al | w- where the 3 region is shown by the light grey band. Note that near-pristine systems
have a that is with the primordial value to within < 0.1 percent, based on this calculation.
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Recombination and photons decoupling
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Cosmology, WS2025/26

10g Recombination and Photons Decoupling

Summary
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AJ“%.;@

Dark Matter Structure
Production Formation
Baryogenssis present
0 0.1TeV 0.1 MeV energy density
1. 1 —
£ 10 ' 0 -
2 log(T/GeV) radiation
<
9 dark energy (68%)
2
(3
o
5]
= 1 .
2
3 log(t/sec) dark matter (27%)
- -10 0 Q 10
= 0.0 ] 1 1 ﬂ 1 1 ﬁ soiiiiis baryons (5%)
3min 380kyr 13.8Gyr
Inflation Neutrino Big Bang Cosmic Microwave .
Background . Daniel D. Baumann

(Chapters 2 and 6) Nucleosynthesis Background
Event time f  redshift z temperature T ‘
Inflation 1073 5 (?) > Inflaton field
Baryogenesis ? ? ? > Particle anti-particle annihilation, small asymmetry
EW phase transition 20 ps 10%° 100 GeV > Particles get mass (Higgs mechanism)

. 12 - Quarks and gluons combine — Baryons ,

QCD phase transition 20 ps 10 150 MeV Quarks and anti-quarks combine — Mesons
Dark matter freeze-out ? ? ? > Quite early to explain its weak interaction (t_coll >>t_exp)
Neutrino decoupling ls 6 x 107 1 MeV > Weak inteaction ¢ + e «— nu+nu-
Electron-positron annihilation 6s 2 x 10° 500 keV > et +e © v7+79
Big Bang nucleosynthesis 3 min 4 x 108 100 keV > p,n — D, H, He, Li, (Be)
Matter-radiation equality 60 kyr 3400 0.75 eV
Recombination 260-380 kyr  1100-1400 0.26-033eV > ¢ +p° «—— H+ gamma
Photon decoupling 380 kyr  1000-1200 0.23-028¢V > CMB
Reionization 100-400 Myr 11-30 26-7.0meV > H+ gamma «—— ¢ +p°
Dark energy-matter equality 9 Gyr 0.4 0.33 meV > Acceleration “start”
Present 13.8 Gyr 0 0.24 meV > Tife
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10g Recombination and Photons Decoupling

Quantum statistics
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Recombination, Bis
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11 Cosmic structure formation Newtonian

Cosmology, WS2025/26

Cosmic structure formation
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Length scales and structure formation
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The density contrast and a model for gravitational collapse
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... and its inhomogeneities

8 Structure formation depends on:
1) Initial conditions — inflation
2) Source — rad, baryons, DM, DE

soml 3) Interaction — gravity

z=5.7 (t= 1 Gyr) z=0.0 (t=13.6 Gyr)

z=14 (t= 4.7 Gyr)
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Structure formation in the linear regime
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Simple case: static universe: H=0
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11 Cosmic structure formation Newtonian

. The Growth Factor: D
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Velocity perturbations
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11 Cosmic structure formation Newtonian
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Quantifying the density fluctuaitons
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Correlation function and Power spectrum
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Normalization of the power spectrum and g;
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CDM power spectrum

- Du/wuhg ﬂ;a-oLa oM /Q/hcl /W\-O«HUL a(p’\/"\/\/v\-c« |0’V\ Mo‘zo—fdejf/Lo_l_bJ =X OVW'MO'V\ = RH ylﬁ“l/)

- Moden with # ) Mtﬂ_ﬂ(/&n’hzwﬂ(f{;%llw} A"‘K:

&

_ fyg\mhﬂ M\ao(kl} glk (l‘.z,ﬂ,u?ju, \,() w|—e/)_ RH w\_,g\m_ i At

4

- \XNEW >\>R5H ,O\M;a]'whﬂ = 8\&.\10'3@\
- uo/&w >\4 RH L;c«{zau 42714/(\/0«@%@ "wv\-e = c?{\quaw 0"0\')/3 L(MD#RAOLQ{]’\OIV‘?MLU\L ?750

- 1 1 /vﬂ'% " ,OQU&Q_AX) z,ww (Ny\o,)ftqﬂ_aldmw\\mn ) DM, P-—-D)
E,z?w\i\/w&/hﬁ% hrw*‘l
oo ok pud Y Mot epecd.
A o /Ouam 0/{ » Adca a>a
| bt pre | lLorein ol R
TP Ky s K, > % MRy | Egwmt] § a8
RN : :
r(2) - > , AR, | §x & | § ke
3
Ol./«l;Y\.a W /.
?LZ%// / anﬁ RH"(QZ Rn‘*él
?ﬁwb& A
_ > Lopfo
[ () o ochrg |
o A, thoodold Pen comhimows qnaetle if X >,
I v 3/2_
= /{ ( = i = C = £ Jé— __O_ 3 =4 N
A R Ho HOv 8+ L3 ‘3)1’1 Ho2 30, Rpijl "
2 e .
I'(,,E%\I-=ZT¥ ? =2T%QM,QJ%; Kol‘f)/&llm\)(/m‘?\ﬁ\/\/\o[:)wvw]'\m H. ,—Q,.. /-p-,
ot (”)

o gu(,ﬂ\ reste la,olgpta"ul J'%Mbe} ,O-t(dwtmg }’w K
‘Z—/QA\/) I» 7M/QM|’I£@| L‘g o Nhﬂ - He W’QN ‘?W-Ac hoan

Matteo Maturi Back to Index 146



Cosmology, WS2025,26 12 Linear power spectrum
M Dimcfiom T (W)

= T quanbidn e mmod icobion of teimabiol powen apecthamn dus b anbrance in R,

- Tkl Powm/,[xctmw Pl « k™ (*&;m \',u%]-{m> pg= 0,96 w4

- EJQa o P =P T T+ bamsfer Juncion (Wkﬂ)

DWMAJIA\ANJQ, M\-IJ"-")'&}AMAM’),

. RML‘Q,L(W C,(Awnim|-l‘<w\
/\'amk’q_: ZTT’}M}E,L = RHD{ Zi‘iﬂ,& ()Pd é"’“,EIL<aE‘1> = é%\'m"( g\/(—z DWM OALA@'L) WU&.UL
Sk QL\ > wke> %7) M@HGLKO[WAM@ Fion

D) Mkve qur?mm'dV\og %M\x,w\
Jo scag amd D TO(3) (8 B-§ 5 Rl o 70ROV
} g opl ;

K <K, |
PK) = éu_g COM pswen ,,r“{,m ol 7(/22—?%
> K, "2%%
g / Chabanier et al.aw)a

gl R,

) [(Mpc/h)?]

102}

(k

4 Planck 2018 TT i
Planck 2018 EE

4 Planck 2018 ¢¢

i

i

P,

101k

DES Y1 cosmic shear
L SDSS DR7 LRG
= eBOSS DR14 Ly-a forest
3 100 " A . R
& T T r T
< 50t 1 [
= =l el
i; 0 == Egﬂ“ '“}“J‘ILW -
af 3
P
:j_\ =501
2 104 1073 102 101 100
= Wavenumber k [h/Mpc|

ABUs w.’ptwcléam (%walm-RmJ-uo;m—Szo&Aa, 198¢)
A/mﬂ\lu frm&?z "DM*_MLJ)-(W H,Jéam& 3{2 wﬂalrvw% . I/‘

RS, oty 2 43 W
T(‘f)ﬂW[4+3,877 (4649) +(5keqy +(6749)' ]~ q=u /71 77/_“:"“/2,})

(ﬂmﬁi:mﬂ IM{'% JMAMB nm\bl'fm\ Ny, (& ()/wmﬂ-ow(t MVPIWMOM ( AmL'o,l'fm//VﬂoH'ﬂ o[mﬂ\ﬂhoﬂ" w{'mg
Ass(ml;km . COM, Mo bo, (BAO)l No wmommve mwml MO Dors- w% a,%uiq /QI-L[Q_ Homars
Mae moderm s Sormnlgim W Hon (4978) @ CAMB/CLASS Bllzmvmn olvens

0 Coam?oaotof :lﬁ\l)w@lmog)
Plw, &) =P, T T'w) D:(e) Uy S%; ?L(K,Ew) \X{,Z(\,()
R, ffects Jq?w? P (W) H;wax; TW (recald },) omd DO
Ms «?\W imeL}w (OJ-@PWJ) &w rw\oalko)

2

Matteo Maturi Back to Index 147



Cosmology, WS2025/26 12 Linear power spectrum

s Aebued olpgcbw Need s ot Dot

L ] v T v v v v T v v T T T
g (a) 2dFGRS+SDSS main g SDSS—II LRGs .
(<]
(=]
2dF Galaxy Redshift Survey g } \
50 s
g ' g
o
s .
= © &0
(ST [ g
> o gy
=8 g3
82821 gale n- o- s
g ! g
5 S
g l, . o g 1S)
Pec /voaoo])(c_ &
o
r*e&/(% er% o ©
S ) S ]
[ Percival et al. (2007) 1 S[_. . . Andersonetal. (2012)
E— — 0.1 0.2 0.3
0.1 0.2 o
k/h Mpc™ k /b Mpe
6000 [
5ooof
. 4ooof
iz :
= 3000
S 2000
1ooof
0
600 F
«  300f
a  of
< 300 —|
g -600 | . i . ) . ! R
C_/"IE) W’)%}W\E_ 2 10 30 500 1000 1500 2000 2500
foa rat
¢l oawn Planck collaboration (2015)

E—

(2) Nom~Livenn, Ww{}&
abhorge X

Matteo Maturi Back to Index 148



Cosmology, WS2025/26 12 Linear power spectrum

Correlation function from galaxy surveys
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Zel'dovich approximation
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Anysotropic collapse
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Spherical collapse and dark matter haloes
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Press-Schechter mass function
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Bwpm}(m "2' DM bodets
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Dark matter in galaxy clusters

The first to speak about "dunkle Materie" Fritz Zwicky (1933)
Velocity dispersion measure of Coma cluster
Virial theorem

He measured 400 times more mass than just the visible one

. o\ O Veeuh

Holbde ]aaw

Dark matter in galaxies

DISTRIBUTION OF DARK MATTER IN NGC 3198

m L l LI B B | l LU B B | I LI B | I | DN ENSS [N |
i NGC 3108 ’
180 |-
B 1
100 oo
50 =
Rubin and Ford (1970) §
o | ] [ | l Lol b L l | . Y l - LAL-
0 10 20 30 40 50

Radius (kpe)

3)

Coma,duster (credit Joachim Port) -
. L B
¢ »

NGC 3198 (SDSS)
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Galaxy Clusters

What they are, how to use
them

(1) Stars/ galaxies

Optical emission from galaxies

Properties:

Mass M~ 10%-10"M _
Virial radius r, ~ 1-3 Mpc
+ Dark-matter halo

+ gasT~10-10°K
+ stars & galaxies

Different regions
Different response to distance

=mal medium large
- 10 kpe - 100 kpe -1 Mpe

srong lersing I

R SC (2) ICM Temperature T~10-10°* K

Bremsstrahlung emission
- X-ray luminosity L_= 10* erg/s

Planck

Inverse Compton scattering of CMB photons
- tSZ effect (CMB) AT tSZ ~ 100 uK
- kSZ effect (CMB) ATKSZ ~ 10 - 30 pK

fexion? e

weak lensing C [ stamerss
Xetiy BNESIon |

52 effect

galkuy kinemasics

(3) Dark matter + baryons

Gravitational Lensing (background galaxies & CMB)
-strong R_ = 5"
- weak
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An example of cosmology based on galaxy clusters: AMICO-KiDS-DR3

Number count of galaxy Icusters: Lesci et al. (2022a)

2€10.10,0.30] 7 €1[0.30,0.45] 7 €10.45,0.60]
— PlancklB
1000 —.= WMAPS 3
68% confidence
=
AMICO KiDS-DR3
% Cjuster Counts
<100} 3
S
=
10
20 30 40 60 100 20 30 40 60 100 20 30 40 60 100

A’ AT A°

Fig. 4. Number counts from the AMICO KiDS-DR3 cluster catalogue as a function of the intrinsic richness A", in the redshift bins z € [0.10, 0.30],
z €[0.30, 0.45], and z € [0.45, 0.60]. from left to right. The black dots represent the counts directly retrieved from the catalogue. where the error
bars are given by the Poissonian noise. The solid blue lines represent the model computed by assuming the cosmological parameters obtained by
Planck Collaboration VI (2020) (Table 2, TT, TE, and EE+lowE), while the red dashed lines show the results based on the WMAP cosmological
parameters (Hinshaw et al. 2013) (Table 3, WMAP-only Nine-year). Both in the Planck and WMAP cases, the scaling relation parameters and the
intrinsic scatter have been fixed to the median values listed in Table 2, retrieved from the modelling. The grey bands represent the 68% confidence
level derived from the multivariate posterior of all the free parameters considered in the cosmological analysis.

z€[0.10,0.30]
100 —— Planckl8
I ---- WMAP9
. 68% confidence
S § AMICO KiDS-DR3
z Clustering of galaxy clusters: Lesci et al. (2022b)
1071
102
10° I 7€10.35,0.60]
AMICO KiDS-DR3 .
— AMICO KIDS 25 AMICO KiDS-DR3
Clustering " Clusterin
—— Planck18 o k18g
—— WMAPY 20 anc
= — - WMAP9
vy
15
R
10
o0 ‘\Q
° 2
o 5t
6 10 20 40 70
s[h~" Mpc] o° 7 ‘\\
Fig. 2. Redshift-space 2PCF (black dots) of the AMICO KiDS-DR3 2 A D o © ® .o 1 0 e e —
clusters in the spatial range s € [5,80] 4! Mpc, and redshift ranges PN L 0.6 0.7 0.8 0.9 1.0
z € [0.10,0.30] (top panel) and z € [0.35,0.60] (bottom panel). In = 0.5
both panels, the grey band represents the 68% confidence level derived Qm Og 58 - Ug(Qm/03)
i h Itivari steri f the fi S consi i . . . . . .
I,:‘:mc;s;t?,::lg:L:n:,:;h?::‘ﬂ;:;gh;demmscef‘m:n:cnfr’;:m:;ﬁﬁ,:‘ Fig. 3. Constraints obtained from the cosmological analysis, compared to WMAP and Planck results. In the left panel, we show the 68% and 95%
puted by ing the logical derived by Planck confidence levels in the Q,, — oy parameter space, along with the 1D marginalised posteriors with the relative intervals between the 16th and 84th

(Planck Collaboration VI 2020, Table 2, TT, TE, and EE+lowE; blue percentiles, in the case of the cluster clustering analysis of the AMICO KiDS-DR3 catalogue (grey lines). In the same panel, we also display the
lines) and WMAP (Hinshaw etal. 2013, Table 3, WMAP-only Nine- results from WMAP (Hinshaw et al. 2013, Table 3, WMAP-only Nine-year: red lines) and Planck (Planck Collaboration VI 2020, Table 2, TT,
year; red lines) is represented by the solid blue lines and by the dashed TE, and EE+lowE; blue lines). In the right panel, we show the posteriors for the parameter S5, where the bands show the intervals between 16th

red lines, respectively. In both cases, the median values of the scaling antilac ) ) et
relation parameters derived by Lesci et al. (2022) are assumed. and 84th percentiles. The colours are the same as in the left panel.
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N-Body numerical simulations
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Ex@e DM %

Millennium Run
10.077.696.000’particles. »

LoxPledcx Ine g fgr
Doty K
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Key results

Dark Matter haloes: P EEEE————
- NFW profile / Einasto profile

e Navarro, Frenk + White: haloes in n-body simulation show a profile:
1 . r %

p m X = Z and r. = chyir (10) 5t
¢ universal density profile, applicable to haloes of all masses

« fitting formula breaks down: ).
« infinite core density I—> Einasto profile Rsa oo

* total mass diverges logarithmically

Flat rotational curves

The Mass functions [ g
RN — ———Sheth—Tormen

I NN, Press—Schechten

- Press & Schechter (1974) 1
- Sheth & Tormen (1999) ? Reed otal. 2003 |

- Jenkins et al. (2001)
- Tinker et al. (2008)

QO -

n/dlog,;m [h?* Mpe—3]
[

| IR AT R N MU

-2
_3_
o] L
Press & Schechter (1974) 8‘5‘-4 - .
- | . \ \ \
26 52 °r 4.6 AR "
N e _ Ye _e b " oA N
_'7 1 IIIIIIII 1 IIIIIIII 1 lIlIIIII L1l IIIIII\ L1 IIII\II 1 IIIIIIII L

10% 108 107 108 10° 1Q10 101 1012
log,, M [h~'M,]

Sheth & Tormen (1999) |

fo-1(0) = A\/% [1+ (:73)”] % exp [— gj;]. 5)

The choice of values A = 0.3222, a = 0.707 and p = 0.3 pro-
vides a significantly better fit to mass functions determined

T N et e %0, . .o..o..o. .
Z%C[:\)Wim ° o?‘ : o" ® ' .:0.:.0 ::"J‘v_.’. *
dnsnicol fuicliom RPN «c . "

’ | ..0.0.0 o’ '.Q.O.o o’

source: J. Schombert
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Baryons: hydrodynamical simulations
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15 Non-linear structure formation with Numerical simulations
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Figure 4.2.: Different methods to compute a continuous density from
point mass particles are: the particle-mesh method (left), constructing a
local volume according to the local density of particles (middle), and the
approach adopted in smoothed particle hydrodynamics (right).

Image credit:

‘Other'ways to solve hydro equations

= Maoﬂ/ Ao[a\;\-i\/e—/vmo/&
o VO’W\Noa +M"2o/hom (. ARE?O Goa]c)

Figure 4.1.: Voronoi (left) and Delaunay (middle) tessellation of a two-
dimensional periodic box. The Delaunay tessellation provides a complete
set of perpendicular bisectors needed for the construction of the irregular
moving-mesh.

Image credit:
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Very realistic representation of the data

Observables (1)

- density

- temperature

- turboulence

- gravitational lensing
- magnetic fields

C3PO simulation
Dolag et al.

Observables (2)

Ray tracing simulations

Gravitational lensing

Weakly lensed individual
galaxies — calibration

- Lensing: -
Meneghtti & Maturi in prep.
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Semi-Analytical models
- %o)«a,:vm Y‘uc AN fs WanLQm @W?&XFJPA‘XMm
- a,«'vcm oenhvw Lscol J&m«'%,g(z e, P, P(Q,t‘)/ wa%l’w@//l_(?/@ (@MJ&W\“ °7'5>

LMXM am //u%a?fn fmapfw@“ - Shw /16/\)5 SM, ...
- Add A&L-T}J PA@M@ . SN, AGN ,Feg;“oacﬁ% , /&,&wo"/ﬂa, nfwo&n,....

é) ’r)ﬁaw o 0L ‘{mﬁa a;( }w ,O.(Oowvx} 1#111 "M

szm fvw N j AC—/US = wzﬁv«»le W% w\\)cc l;yV\ n HLQ mhuw

de uua et aI.

Semi-analytical models: a sketch

e Each halo has a mass and a position

@ Accordingly attach a physical/phenomenological recipe
e Follow the story of each haloe (Milky-satellites)

0.8

0.6

0.4

o
|

02 !

lookback time (Gyr)

lllllllll

= -

Ejected Gas

Hot Gas

Cold Gas

rg et al. (2013)
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AGN, Relativistic jet Radiative R
.. an artist’ s view ¢ Numinatien expels cold gas reservoir reheats cooling atmosphere
o conial g -

\\\‘en al black hole T AON O

A . "*" e —
Accretion disk _ . Narrow line region e

. = o -
a

Yy 4

o +—— Broad line region — —
-

Black hole: R ~ 10 - 10 pc T V4 Ron
/ . Accretion disk: R ~ 10 - 102 pc | \*) , /
/ Broad line region: R~0.1-1pc {l\ 4

Narrow line region: R~ 10 - 102 pc
Obscuring torus or disk: R ~ 10% - 103 pc

Obscuring dusty torus’

Fabian (2016)

AGN feed back
Hercules A (R. Timmerman; LOFAR & Hubble Space Telescope)

observations =T
S 7
®
L als
A -

luminosity

T Silk (2011)

AGN

Ram pressur stripping
ESO 137-001 (NASA/ESA/Hubble Heritage Teal

SN
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Merger trees and semi-analytic modelling

Matteo Maturi

Heidelberg University

Cosmology WS 2025/26
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Summary

Subject

® The satellites of the Milky Way - Insights from semi-analytic modelling in
a LambdaCDM cosmology

Starkenburg E., Helmi A., De Lucia G., Li Y.-S., Navarro J. F., Font A. S., Frenk
C. S., Springel V., Vera-Ciro C. A. and White S. D. M.

® The Spatial Distriburion of Galactic Satellites in the ACDM Cosmology
Wang J., Frenk C. S. and Cooper A. P.

Content

® The satellites: Where? Star content? Metallicity properties? Comparison
with hydrosim.

Aquarious simulation

Intro to semianalytocal models

Papers semi-analytical model

Papers results
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Aquarius simulations

resimulations substructures in substructures

- DM only simulation (cube 100h~*Mpc) (=> full LCDM context)
- Resimulation of 6 isolated Milky-like galaxies

- Different resolutions up to about 200 million particles
- One halo at 1.5 billion particles (IGNORED HERE).
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The merger tree: DM

1. ldentify haloes down to 20 particles with FoF

2. Follow the mergin history of haloes = Merging tree

3. Identify the ’first’ progenitor: M; = N; + max(M;, M;,, ..., M;,),
(N; number of self-bound particles of halo i, I\/I,-J. progenitor of the halo i)

Sub-structures

dynamical friction time scale
Y ﬁ not merger{

or . ERERRIE:
: | e
2 dissolution i 8 : g 1 fi
—_ B . 4 Y 4
{% ; - ‘Main tree e 4§ _ E §
= - g | {1
[ = - °
g 61— T] $ =g 5
il i 11 A i1k
[T 13 ! § £ L
1] B 1 A i i
L - ] \ A Y
T T ;g Jé : a1 |
2 10 i § ? { i 11 i& Y-
- ; -
12— 2 f i
i ° lO‘parL AO lD"’part. .108 part.
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Physics between haloes

Gravitational interactions between haloes

— Merging of haloes

— Tidal truncation, tidal stripping (merging haloes loos peces)

— Dynamical friction (merging haloes slow down and get absorbed)
— Gravitational dissolution (haloes get smaller than 20 part.)

— Physics within haloes (sub-grid)...

Here it starts the spherical-cow domain
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16 Merger-tree and semi-analitic modelling

Semi-analytical models: a sketch

® Each halo has a mass and a position

® Accordingly attach a physical/phenomenological recipe

® Follow the story of each haloe (Milky-satellites)

lookback time (Gyr)

10

12

llllllillllllllllll[fll[

il
‘I‘ |.
‘I|: I'||

Al
|
i

O 10" h'Mg
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Paper Semi-analytic model

® Reionization
® it reduces the content of barions in haloes (filtering mass)
® Use global reionization (15 > z > 11.5) stronger than usual
® Anyway local reionization by local sources is full at z = 10
® Cooling
® depends on haloes metallicity and temperature
® no cooling below 10*K
® helps star formation
® Star formation
® cool gas in discs above a certain mass goes into stars
® star formation is proportional to that amout of gas
® Passive stellar evolution
® [IMF: what is the mass distribution of stars when they form
® Stellar evolutionary tracks (Padova 1994)
® SN feedback

® Gas heating and ejection of gas

® fraction of ejected gas depends on the halo potential (x Vzgg)
® gas can be reaquired
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Semianalytical model

® Metals

® NO full chemical chain
® follows the star formation events
® fine only for Type-Il SN

® |f haloe turns into a satellite

® Ram pressure stripping of hot gas component
® Ejected gas component
® Star stripping: stars goes to central galaxy
do not affect luminosity function, because a given star remains so

® Tydal stripping — goes to central galaxy
® when particles of one haloe get < 20 particles they are fllowed by their (sub
bixel) recipe (orphans)
® important for luminosity function
® BUT: how do they follow their spatial distribution???
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A more detailed skatch

Ejected Gas

Hot Gas

A

Matteo Maturi
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Cosmic Microwave Background:
intro and the power spectrum

Matteo Maturi

Heidelberg University
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17a CMB intro and power spectrum

Dark Matter Structure
Production Formation
Rapisgenssis present
[_f 0.1 TeV 0.1MeV energy density
z’ 1-0 T i il
= 0 _—
g log(T/GeV) radiation
<
& dark energy (68%)
2
o
s
g .......
§ log(t/sec) dark matter (27%)
- - -10 0 10
& 0.0 — 1 1 ﬂ I R 1 ﬂ - baryons (5%)
l . / 3min \\ // 380kyr  13.8Gyr
Inflation Il;leulirmo d Big Bang Cosmic Microwave
(Chapters 2 and 6) ackgroun Nucleosynthesis Background
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Dark Energy
Accelerated Expansion

Afterglow Light

Pattern  Dark Ages Development of
400,000 yrs. Galaxies, Planets, etc.
T[eV]
—_—T § 1 recombination 0.1
g A e G = l T ]
. y ecoupling E
Inflation |/ nl | \ — o E
" y f ‘o - - | 107! £ |
\
\
\
1072 ¢ v E
Boltzmann
107° F | Saha
plasma \ neutral hydrogen
=
10* 10°
redshift 14z
102 10" 10'* 10° 10® 107 108 10":‘{ 7107 102 10' 1 107!
T T e

L I T e
radiation { matter )

1

e
-]

] &
G s

08 g 2 s ]
B = ] z
) o i i Q
(8 2A i 8

0.4 - H) o\ g E
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0 "l l . il o ERTTT BT T
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scale factor a
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Few simple facts

Some history:

- Last scattering surface =>z=1100
- Up to recombination baryons and photons are tightly coupled => same T

a(l+2)7" => universe is 1000 smaller

T, xa 1= (1.z) => “ “ 1000 hotter

Toxad?=(1+2)7% => “ “ photons traveled for 99,997% age of the universe
p o 0.04(1 + 2)? => “ “ 10° times denser

Linear perturbations (analytical) et _ |
Simple physics (adiabatic contractions) [=>Itis a clean observable = Powerfull

- Strong prove for Dark Matter:
fa=1)
Dy(acuB)
But in reality they are d(acap) ~ 107°. Why? (flat)
-- DM feels only gravity
=> dpascontinue growth (p=0 — no oscillations)

=> the estimate does not account for this
=> structures form “more” and when we rewind we start from a d(a = 1)which is higher

Amplitude with linear growth from a=1backword, fluctations turn out as:

- Important scale : R, ~ 1.7° how can it be so uniform?

-<T>=2725K => m =1lmm

1 103
2 agpyp ~ 10

15/01/26 Matteo Maturi
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The discovery of the CMB

Some history:

» 1946 Robert Dicke. Radiation of cosmic matter, predic: T < 20K (not yet CMB)

* 1946 George Gamow. Predict T = 50K assuming H = 3 10° years ant actual temperature of IGM
« 1948 Ralph Alpher & Robert Herman. Estimate T = 5K

« 1949 Ralph Alpher & Robert Herman. Correctto T = 28K

« 1953 George Gamow. Estimate T = 7K .

« 1956 George Gamow. Estimate T = 6K .

* 1960s Robert Dicke. Estimate T = 40K name it MBR (Microwave Background Radiation)!

« 1965 Arno Penzias & Robert Woodrow Wilson. Measure T = 3K as BigBang signature (CMB)!

Cosmic Microwave Background Spectrum from COBE
400 T T T T T T T T T
11 =H¥H ” COBE Data
FIXIng antennas .- 350 |- Black Body Spectrum ——— |
300 - / —
/
/
T 250 —7( i
=
= l'
= 200 -
2
. ; ‘ 7]
Microwave Receiver I .\.H X E 150 |- ]
100 - —
50 B
Arno Penzias
.
MAP890045 Robert Wilson 0 1 1 1 | | | | %_W
2 4 6 8 10 12 14 16 18 20 22
Frequency [1/fcm
15/01/26 Matt quency [lfem]
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Big Bang

Neutral

Crowe, Moss & Scott (2008)

15/01/26

CMB observations
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Not easy... Galactic foreground

e — crterence Objects:
- gas
- dust
- localized sources:
SN remnants, star forming regions...

Process:
- synchrotron
- free-free
- thermal (black body)

C 4 30273
1 3cer9

Cyg Al

i . ‘l'" L
T ‘—L—Cyg'aE&im{' =

X : 5 > . X g a

| |
-200 T(uk) +200 30 T(uK) +30

15/01/26 Matteo Maturi 8
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But possible... Components separation

v Asyne (i) 7 Braelr) v Bz ()
ETH—J[V} = Tsync (u—) + Thee (_) +d Toms a(b‘)-|— Toust (_)
K

Ly L'y

15/01/26 Matteo Maturi 9

Matteo Maturi Back to Index 190



Cosmology, WS2025/26 17a CMB intro and power spectrum

Dealing with a sphere:
Decomposition in Spherical harmonics
We see Temperature fluctuations projected on a 2D surface (sky)
. Sy orT . .
@(1’1) _ ﬂﬂ(%ﬂ = ?(n) — Zalm}/}m(n) Temperature fluctuations
Im,
Y, = 2041 (E _ m)! Pm(c:ﬂsﬂjeim‘ﬁ Spherical harmonics
' 47 (E + ’m.)! ¢ P/ are the Legendre polynomials
T 27
Qi = f ©(h)Y, (0)d Coefficients
f=—m =0
(@im @}, ) = 0001 Omm/ Ci Power spectrum
4 is called ‘multipole’ and represents a given angular scale in the sky 0 ~ 7T/€
15/01/26 Matteo Maturi 10
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How the modes look like?

)

15/01/26 Matteo Maturi 11
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Intermediate-scale

Large-scale modes

Small-scale modes

Temp. variance

| = oscillations per ~180 degrees
Courtesy of Douglas Scott

15/01/26 Matteo Maturi 12
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Courtesy, V. Pettorino

/\/\/\/\/\/\,\A
A NVAAVARVARVANI AVAL AR N

Power spectrum

2 A N
—>

Compression and expansion (A>R,)

ng Env. Smaller Angles —» - Gravitational t. delay
- Gravitational redshift > SW effect

Harmonic oscillationsi (A<R,)

- pressure is active
- velocity and compression

Potential Env.

l(l+1)Cl

Baryon dragging

Damping suppression

@=unmnun o Late ISW . . .
ae Velocity and density add in
= —=—=—9 Early ISW
quadrature
———o Eff. Temp.
®---- == -@ Doppler
Hu (1995)
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6000 [ ' . 1 , :
5000 | the measured
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CMB temperature fluctuations
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17b CMB anisotropies
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Main dependencies on the cosmological parameters
T/&a PQ;JLLMD 2 Hf\& ? N8 sz(bww-n Juely(’/m\ m H,\e (,GNW\U(&XCGX Fonmmei'm
&ew s{ an J«u/mv m I;LE. M\U&'L oLam en :Lok:mbe

Jda
e v il L gl St ol (o

. 50 w (2.1 41 2] (2.1) (.

W,

\\77 oy, W@'QMNE lbuuwl J&A //&w /Q

R

D, H. Cn = (B (LT
. [H. D;--%H:ﬂlo (I—IOT & £\|,> WZ
Z)Mwwelouaam'zaaouo,\c ood/%}\&m

1= ont fo 4y A bl Jlibion (onn penky) sond

el (ot = 1) = fmgm tonbochon (o4 peoks)
i
=Y (,Q\AM?Q l/V\H’\E_ /Q/\MP’?/\(‘MA/QQP );veztléou/) 1 P&»&’n VLT,TT .
| I

(Sl (A= ATH) LhTow

0 e umienre : coll ocohen
;Lwﬁ%‘ %Fﬁaﬁn } m)&o W
4) ahamge In Hk_ pM/\MdleLoQ ‘P’NWL qpec*/\.uw (w%

T()
o | Ms P(k)‘“( T (KJ mt - -PﬂV\NWW“ Plw) P / \k
o % W

5 Tel ¢ ;52 'F =  pu 0~ ¢ o
)(XMHWJMS - ppremim of ighn nades
é) %LJ M'.MM.Za-de\ : sz\e J = nu‘:)f!\eyy\-o'\« 0+o/l}n 0/7t ﬂowe/l £

Matteo Maturi Back to Index 202



Cosmology, WS2025/26

17b CMB anisotropies
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Gravitational lensing

Matteo Maturi

Heidelberg University

Cosmology WS 2025/26
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Introduction

The key point

® Photons travel along null geodesics

Matter fluctuations perturb the metric

Photons follow perturbed null geodesics

This is gravitational lensing
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History: the beginnings

. .. . John Mitchell (1784) ey

Photons as massive partiles: Johann Von Soldner (1801) = a= 37
. e ey . . _ 4GM
Equivalence principle:  Einstein (1915) = o = 43"

Experimentl proof: Dyson, Eddington and Davidson (1920) = o« = 1, 75!

"Dear Mother, — Good news today. H.A. Lorentz has wired me that the British
expedition has actually proved the light deflection near the Sun.”
A. Einstein

P ottt Aoy

gas2 e T bk
cr %-M

A. Einstein j ]
Instei Einstein notes Eddington Experiment
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History: toward the modern times

Ideas about possible schenarios

- Einstein rings (Chowolson, 1924)

- Multiple images

- Stellar microlensing (Mand| -Einstein, 1936)
- Galaxy (nebulae) lensing (Zwicky, 1937)

- M31 star by ML star (Liebes, 1964)

- Time delay (Refsdal, 1964)

“The thinker”, Rodin

The very first observations

Lensing by the Sun (Dyson, Eddington, Davidson 1920)
QSO 0957+561 (Walsh, Carswell, Weymann, 1979)
- 2 images d=6" zs=1.41 identical spectra
- galaxy lens discovery zI=0.36 (Stockton, 1980)
- VLBI —  same core-jet structure
Giant Arcs in A370 Cl2244 (Lynds & Peterosian 1986])
Rings (Hewitt et al. 1988)
Quasar microlensing (Irwin et al. 1989)
Weak lensing cluster (Tyson, Valdes, Wenk 1990)
Weak lensing group of galaxies - LSS (Brainderd, Blandford, Smail 1996)
Microlensing star - star (ML bulge) (Udalski et al. 1993)
Time delays QSO 095-+561 (Kindic et al. 1997)
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Gravitational lensing and optics

Aint | ds’ = dt? — dx* )
-Interva ds® — <1+26_g) czdtz—(l—i—u> d® =0
. . 2 s 2
Diffraction index n=<=1+Zj0[>1 At=[ Z|o|dz
v c o C

Deflection angle &=

oo
A4

The lens equation

o OO
QOQO

—~~
>
o
Il
>
|
Q)
—~~
>
N
00o
AN

Assuming: 0,06,a < 1

Thin lens approximation: lens size much smaller than distances

It relates the lens, the source and its image positions on the sky

Describes how a deflection field acts on a background source.

& is the reduced deflection angle
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The lensing potential: deflection
® The lensing potential is defined as:

2 Dds

¥(0) < DuD.

/ ®(Dgyb,z) dz
gravitational potential integrated along the line of sight (thin lens!)

® The reduced deflection angle @ is the gradient of the lens potential

— 2 2 Dds / Dds / Dds —
\Y% 0) = Vo® dz = V i$ddz = 0
ov(0) = 5 DaD- o®dz="1"7 1®dz = a(f)

Vo (0) = a(6)
® The convergence k is the laplacian of the lens potential

. 2 DyD 2 DyD 2 DD R
Va(0) = 5 =2 C’S/v%d ‘2)‘“4 G/Vggdz:—z dDd547rGZ(9)
C (o)

S

e P pd pnd C2 Ds
V2(0) = 2K(0 0) = ¥(0)/= Y= ——
o¥(0) = 2k(0) x(0) (0)/2cr " = 4G DyDu

K quantidies the surface mass density

Here, we used the Poisson eq. V2p = 47 Go and defined the critical density 3>,
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Lens mapping: shear and convergence

® The lens equation can be linearized for small «

. Dys I - - .4 o
EaO)=0-a0) —  B) ~ Fo+ Allo)(0 — bo)

® The image transformation of the source is described by the Jacobian matrix of
the lens equation

AEa—é: 5U_82¢(0) :<1—I<,—’Yl -2 ):(1—,;)(1_& & )
90 96;00; —72 l1—-rk+m J-0) 1+a

® isotropic magnification (convergence) and anisotropic distortion (shear) terms

aa(d 2)-(2 %)

® Here, we introduced the shear v = 1 + iy2 = |y|e*®

1 1
"= (Y11 —v¥,22) 1= > (¥,12 + ¥ .21)

Vi

reduced shear

8 =
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Image magnification

® Magnification (defined as the ratio between solid angles)

a = r(l—kx+~)?!
b = r(l—k—7)"1
Q) = mab = 7r?/det A _&_ 1 1
Q=nr’=mn H Qo detA (1—k)2—~2
® Magnification tensor:
M=A"1
Its eigenvalues measure the amplification along the tangential and radial
directions:
1 1 1 1
“t_At_l—/Q—q/ Hr_)\r_l—fi—l—v

® Strong lensing and the critical curves:
magnification diverges along the curves where A\t =0 A\, =0
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The mass sheet degeneracy

® Homogeneous mass distributions do not introduce any image distortion

Clear invariance transformation of the lens mapping:

1-g& g2 / 1—g1 g2
A Al KJ)( 82 1+g1 ) ( K)( 82 1+ g1 >

The new convergence is k' =1 — A(1 — k)

The new shear is v/ = \y

The new reduced shear (what we observe) is unchanged g’ = g

One way to break this degeneracy is to combine shear and magnification estimates
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Looking at the sky: galaxies as background sources

"
8%00 gyt ]
. ] @Q 0 Y -
Distant galaxies (z~1-2) E’%‘f& %9 & ]
Typical size r~1"—-10" @@Oﬁg%@@ E
Typical density n~ 10 — 100 W R T
Hl
I8 ! }H
2000, 108085, g% F
. . (s) ) %O" 05 F
Distorted ellipticity e= -~ & §§;§%‘%@ o
14 g*el®) Ry (T
ﬂ%%%’?ggﬁg;gﬁ
. 52 oy;f © 0%5 —0.5 - ]
Hypothesis: (=0 = (=g ECreanIE : ]
g N s EEEE N SRR NN

-1 =05 0 0.5 1
€
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Gravitational lensing by LSS

® Linear structures

® Small density contrast: & =
® Characterized by large scales
[ J

Refregier 2003, ARA&A,41,645R

So far we concentrated our attention on single lenses
But the universe is filled with distributed matter

Its distribution depends on cosmology — let's study it!

p—p

Pb

The effective convergence is given by the sum of lens planes

b

<1

Fill the whole line of side: sum over all contributions

Heﬂ(g, W) =

2C2 fK(W)

Reminder:
f(w): The comoving angular—diameter distance
d = (p — p)/p: density contrast
a(w): scale factor of the universe at distance w.
2k(0) = V2¢(0): convergence

P(0)= 22 [®(Dy0,2z)dz  and V20 = 4nGy

— 2 DqDs

i [ g o — 0 fitor) /)0
0

a(w’)

: lending potential
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Cosmic shear power spectrum

® Sources are distributed in redshift: weight over the source—distance distribution

G(w), -
e (0) = /0 dw G(w) Kegt (6, w)

® The power spectrum of the effective convergence P, (k) is related to the matter
power spectrum Pgs(k) by the Limber's equation,

Pu = 25 [0 W ()

4c2 2(w)  ° \fe(w) "

the weight function W/(w) is given by

W(w) = /WH dw’ G(w') %
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The aperture mass

Map (8) = / 26 () Q(F — &)

® @ is defined to be compensated
® Info on surface mass density (K)

® Detection of clusters (candidates)
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Cosmology, WS2025/26

Lens mapping
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Cosmic shear
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Luminosity distance

Supernovae la

SN
no H
Si no SI
no He

Typela Typelb Typelc Typelll

Thevmomclear Core Collapse

® ) O

SearCh Strategy Perlmutter et al. (1995)

« @& )

Y N

fin Thevmomclear Core Collapse

noH

Si no Sl

e no He

Typera Typelb Typelc Typelll

Supernova Cosmology Project
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Standardizable not standard candles!

B Band

My - 5loglh/e5)

E Calan/Tololo SNe Ia
-5E s n | | I
20 0 20 40 60
days
0 T
E ~ %l
§ ' o light-curve timescale
"95 [r* k& “stretch-factor” corrected
- E: o
a E .
T 1 i 2
< 185 7Y
2 F "\
oo
E'm 17E L.: E
E - ;
E ‘E. o -e—‘
= = . .
16 =
sk . . .
20 0 20 40 60
days

Kim, et al. (1997)

Calibrate:

correlation between peak and width of the light
curve

empirical correlation

Hope:

assume that all supernovae are the same for all z...

(metallicity evolves with time...)

Try to control:

absorbtion along the line of sight

absorption within the host galaxy

scatter due to gravitational lensing (marginal)

introduce nuisance parameters when fitting

Matteo Maturi
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Super Novae

46 T T T T T
|
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44t f 1 % SR 1 .
gt
40 BT 1 f
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n 401 B PRl #
42} il ey | I 1
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S Amanullah et al. (2010) (SCP)
'840_ Riess et al. (2007) ]
7
= g Miknaitis et al. (2007)
o Astier et al. (2006)
C L Knop et al. (2003) (SCP)
38 . -
_"B Amanullah et al. (2008) (SCP) I
n Barris et al. (2004) ofs
fa) Perlmutter et al. (1999) (SCP) - ad
36} Riess et al. (1998) + HZT =
Contreras et al. (2010) Holtzman et al. (2009) .
Hicken et al. (2009) ;5
Kowalski et al. (2008) (SCP)
34 Riess et al. (1999) HubBle (1929) PNAS 15(3), S. 168ff.
— ¥ p; 2210% PARSECS
IGURE 1
Hamuy et al. (1996) Velocity-Distance Relation among Extra-Galactic Nebulae,
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Understanding the “banana plots”

Supernova Cosmology Project

L O LI L L L L AL B P Suzuki, et al., Ap.J. (2011)
No Big
11/Bang
Hypothetical SN Ia
2r atz=1 4 Union2.1 SN la
, | 12F Compilation
Hypothetical SN Ia with gN
itz=05 i Systematics
o
G g 1.0
[ = g :
8 g JHL 1 _
> o
25 L% /
2 > 1 08}
e gt ' g
§g |7y
3 8 (Vi
geo
> o 06
v
7 s
(3 ] 04 ~
a1 () & ] "
‘L" ‘_:‘“ é\ ) BAC " &
Y/ g ]
4! 4 | 14 I'i | | | I, A I | | R S | o 5 A | 0.2
0 1 2 3
: o>
mass density O
Goobar & Perimutter %90 02 0.4 06 08 1.0
(Ap.J. 1995) Qm
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Model free expansion rate

cl
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r.(2) Hoa /a :L'2E(w) Ho a / 2 e(@),
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(Volterra integral of the second kind)
. o
d i
e(a) = —a*Di.(a) +a / Bew).  aw=3 di@
1 i=0
Solved in terms of a Neumann
series
J L
Dy(a) = chpj(a). Di(a) = ch-w}(a).
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Cosmology with optical
galaxy clusters

Matteo Maturi
Heidelberg University

Cosmology 2025/26
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The GAME
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Cosmology, how to

Lensing
tomography

Supernovae

Structure

Galaxies growth

Galaxy

clusters gl

Lensing

ratios

Matter / metric fluctuations Distanced = geometry

»  Galaxy Clusters =

Matteo Maturi Back to Index 226



Cosmology, WS2025/26

20 Galaxy clusters cosmology

Axion-like 4 Standard Sterile

Particles Model » neutrinos

Light bosons Neutrinos

Dark Matter Weak Scale

Effective
Simplified Field
Models Theory

o O T
Macroscopic e WIMPzilla
Particle

Primordial . Superflui el
BHs MaCHOs Superfluid interacting

Bertone and Tail (2018)

Matteo Maturi
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Kill the dragons... Scalar-tensor theory: Horndeski

S = / d*z/—g Z L;+ S, Horndeski (1974)
i=2
X =—gudte¢” /2 <= canonical kinetic term
Lo =K(¢,X), <= non-canonical kinetic term

L3 =—Gs(¢, X)00, «= non-canonical kinetic term Gs

L4 =Ga(d, X)R+ Cux [(mqsf - (v#wa)ﬂ . = couplings =

_ G ‘ _
L5 =Gs(6, X)Cru V'V*$ — 22X [(06)° — 3(09) (VV.8)’ +2(VuV,0)’

The most general scalar-tensor theory giving second order equations of motion

Propagation of tensor modes (GW): cr =1 for G4=G5=0
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Why complicating gravity?

Gt - Bzl bl o
<_]”—'“)LM : @_FI ex PE'CM;W VOQME DP yo-Cutumn and mﬂa nrfica'm

6ty ot BTE (T |

TPk et COITal0b= [ AL, B, = o0 vacminn el sl ] nSlion

(m?<

In (Mﬂu@c] q{boe-f(me ihio wovxl‘ </"">Lm: <;|)> + (,M,> cw Jmn?emf famrs Mw& ?wvvu wﬂvo« we

G)\a"'/\m;j/«o_”(l H:: B JTC} <—,E""> > (P\ml"e_ ofate- JRPWf hwm) + l61T7' /A

t R s DA

PM
polidn (exctedslofen) A A i

S(tensor field(s), baryons, radiation, scalar field_dm, scalar field_A, inflaton, interactions)
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Optical / NIR
surveys
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Survey Filters & depths Area (deg?) Seeing (") neff (gal/arcmin?)

Euclid VIS ~24.5;Y ~24.0; J ~24.0; H 15 000 0.18 (VIS) 30
~24.0

Roman HLIS R062 ~26.9; Z087 ~26.9; Y106 2 000 0.12 45
~26.9; J129 ~26.9; H158 ~26.9;
F184 ~26.9

HSC Wide g ~26.5;r~26.1;i~259;z ~25.1;y 1400 0.6 25-30
~24.4

DES g~24.7;r~24.4;i ~23.8;z ~23.1; Y 5 000 1.0 6-7
~21.7

KiDS + VIKING u~24.2;g~25.1;r ~24.9;i ~24.2; 1347 0.7 8
ZYJHK ~22-23

LSST (10-yr) u~26.3;g ~27.5;r ~27.7;i ~27.0; z 18 000 0iF 26-30
~26.3;y ~24.9

J-PAS (almost 54 NB filters to r ~23.0 8 000 (goal) 1.0 ~3-4

spectroscopy) N
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Sky coverage of selected wide area surveys - OPT bands
12H Equatorial Hemisphere 0 Equatorial Hemisphere
SN

Footprint
optical

AR

\1\\\'%\\\’\\’\
? \\\“‘.\\\‘ s

KK

7

/" A % X
G
%
\ .})"';’//'

Central (RA,DEC)=(180",+07) Central (RA,DEC)=(0",+07)

Dust E(B-V) eRASS Texp VST-ATLAS == CFHTLS/RCS-2 —= SlkyMapper
>1.0 - >10ks s VST-KIDS [ HETDEX — cRosita-DE
=1 0.5 l:l 7. Sks BOSS 3 Subaru-HSC — JZOOO‘gr\d‘
m— 63 D i v eBOSS 000 OGLE-IV Galactic grid
o B >0 kS mm— SEQUELS ZZzz) LSST-Main Ecliptic plane
l:l >0.2 >3ks 20999 DES (round17)  —= PanSTARRS
i i>0.1 ~oow DESI Imaging === MagLiteS-goal
12000 Coords. Zenithal Equal Area Projection (radius=100") dwelly@mpe mpg.de
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Footprint
NIR

Euclid!!!

12H Equatorial Hemisphere

Central (RA,DEC)=(180",+0°)

Dust E(B-V) eRASS Texp

Bl -10 [ >10ks
>0.5 | |>7.5ks
>0.3 >5ks

[ ]»02 >3ks

s

12000 Coords, Zenithal Equal Area Projection (radius=100")

Sky coverage of selected wide area surveys - NIR bands

NIR Coverage

UKIDSS-LAS s VIKING
VHS-DES — cRosita-DE
VHS-ATLAS —— 2000 grid
VHS-GPS Galactic grid
WHS-rest Ecliptic plane
VMC

0" Equatorial Hemisphere
NIR Coverage

dwelly@mpe.mpg.de
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Cluster samples
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Optical detections
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Optical detections

Galaxies @ {Oi} Stars

3706 7463.61 157.232 2 1.25 -8.018673 0.08329224 6.87081e-06 16.2722 -06.00933983 0.3
4079 785.872 166.885 2 1.25 -0.00677133 -0.0191166 1.33513e-85 16.2722 -90.00338601 -82
4126 4863.13 204.884 2 1.25 oo oottt " .B6214e-85 10.2722 -0.0228858 0.3
4248 2885.11 215.226 2 1.25 .42859%e -85 16.2722 -6.00483329 8.3
4792 6984.93 237.745 2 1.25 \/EE(:t()rE; .19831e-06 10.2722 -90.0199633 0.2
5372 2113.37 282.364 2 1.25  -v.ivevwowa v e -.15905e-06 16.2722 -0.0104369 0.
5475 7424.76 301.021 2 1.25 -0.0436674 ©.0340955 9.44324e-06 10.2722 -0.0218505 0.3
5956 9548.46 321.836 2 1.25 -0.0436195 -0.0446261 4.4972%e-06 16.2722 -6.621831 -03
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Optical detections in general

Data Estimator o
D, (f) = S, (0) + N, () Acsi (k) = Z DMIRLAIINI —» Ra, Dec, z, richness, ... |
v=1
Catalog of galaxies Filter: select / combine galaxies
ra, dec, magnitudes - Red sequence RedMaPPer, RedGold, WAZp, CAMIRA, ....
no need of photo-z
RS fades with redshift (color bias selection)
ra, dec, z - "Wavelegth” PZWav (two Gaussians, typical angular scale)
minimal assumption on clusters
does not exploit photometry
ra, dec, mag, P(z) - Optimal matched AMICO

Clean matematics, flexible
Minimum variance
(model: radial profile, luminosity function, ....)

Stellar masses
Voronoi tassellizations
FoF
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AMICO: Adaptive Matched Identifier of Clustered Objects

Bellagamba et al. 2018
Maturi et al. 2019
Euclid: Adam et al. 2019

Statistics measured from data Mode: property of cluster members
power spectrum Ra, dec, mag, color...

Noise covariance

Cop = (N (RN (K)) = (2m)25(k — K)P,u, (k)

Estimator b= (Aest — A) Constrained

minimization

M
Acst (k) = z::l D, (k)¥} (k) 0% = ((Aest — A)%)
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AMICO
1) Decide what you are searching for: cluster model and background as a function of z (the filter)
2) Make amplitude 3D map with its uncertainty and likelihood

3) Select the most-likely detection among pixels with S/N above threshold

4) Attribute membership probability to galaxies
5) Cleaning map from detection by removing contribution of member galaxies

Repeat down to SN,

N
=
=
=
3
)
o
<
©
S
bt
s
@
=
S
S
o
<
[
w
3]
g
o
o
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AMICO

1) Decide what you are searching for: cluster model and background as a function of z (the filter)
2) Make amplitude 3D map with its uncertainty and likelihood

3) Select the most-likely detection among pixels with S/N above threshold
4) Attribute membership probability to galaxies

Repeat down to SN,

5) Cleaning map from detection by removing contribution of member galaxies

—~
N
—
[a

N
=

&
=

3
)
o
<
©

S
bt
s
@
=
S
S
o
<
[
w
3]
g
o
o
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-27.82

You get the clusters

You get the members 27.84

-27.86 g

Dec.

-27.88

-27.9

-27.92 o

Maturi et al. 2019
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You get a redshift estimate

e.g. AMICO-KiDS-1000 v.s. DESI + GAMA + KiDZ

Calibration with spec-z is best

0.15 0.15 — 10
—— Az(1+Z)=al(l+e P bi) 4 d ---- final 0
0.101 ---- final 3.0-0 clip 0.10 r9
—_ ] —_ Ty ; '8
é 0.05 § 0.05 ; ad -% A Tod x
'\lll1 - f\|In N 7 >
+ 0.00+ + 0.00+ B
) .
-~ S 6
3 -0.05] J -0.051
5
-0.101 -0.101
4
-0.1 w w " w -0.1 . T : T L
%.0 0.2 04 0.6 0.8 %.0 0.2 04 0.6 0.8
Zspec Zspec

Maturi et al. 2025
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You get a mass proxy: richness

Careful, several definitions!

e.g. AMICO-KiDS-1000 v.s. eRASS1

In reality Masses are form Lensing (optical) and Spectroscopy
KiDS-1000 Maturi et al. 2025

0.014 T ™ T T ——— T T
140 A L i S ' 0,=0.45 , 0.1<2<0.3 —— 2203 O '
F ] o, =0.36, 0.3<z<0.6 —— I 0.3<z<06 O
120 - not matched . 0.012 0’::0.22,0.6-(24:0.9 Sp— 1] 0‘525209 o]
: best fit - ’
— 100 - 0.01 | =3 ] 100 g
» E [
= . @
= gt 1 o o0008f[ 1
R . ! g B 2
= 60| %0 4 © o006, ;
2 5 *%® *¢° 3§ . |
= 40F 2V%mt el . 0.004 7 | |
: P Vs "hS Yelan £a00 0ot ! [
LW W T AN AR y
20 * o - i . . 2
ﬁ} 31t ‘1 - o wE @ gh o 0 -
0'”' el i becia Uil ereelivaibans ey oL ‘. ) - — ]—L L 0 1 ; NP ]
0 010203040506070809 0 0.5 1 15 2 25 3 1 10 100
z R [arcmin] Mggq [10%3 Mgy,]
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Optical/NIR Spectroscopy gives you masses as well

TNG (N=2914) Zz=0.07 TNG (N=1390)
341 @ AMICO+DESI (N=65) 341 @ AMICO+DESI (N=165)
— - TNG fit (220.07) — - NG fit (z=0.25) °
=« NG fit (20,07, ref) == NG fit (2=0.07, ref) °
3.2{ I ™G medion (16-84%) 3.2 M ™G medion (16.84%) -
. L]
. .
— — J L] L]
730, 8 oo e T 30 ‘s A~
= e = . m
g e o o ; - £ . %8 %" P T
S 28 o o > ‘—.“— S2890 o 0. ° A {,n"‘"'—'
H ° o e g ° it
: e ®oy et e afs I oleee e P LA i
526 S S . o 267 %0, - P i
o - e 4 k] -, %o '. L §
e o o
L]
2.4 . 241e P RS o
. Y L] L]
e o ° )
~ s LX) o
13 L
22 . 22 o
° L]
o®
2.0 2.0
136 138 14.0 14.2 14.4 14.6 148 15.0 136 138 14.0 142 14.4 146 14.8
log Mzo0c [M6 ] log Mzooc [Mo ]
NG (N=1222) NG (N=1064) Z=0.72
== TNG fit (z=0.47) == TNG fit (z=0.72)
* e TNG fit (2=0.07, ref) o NG it (z=0.07, ref)
3.2{ I ™G median (16-84%) ° ° 3.2 { I TNG median (16-84%)
L] . .
(]
—_ o o - i 3y
7 30 = _i_—'_. 7 30 ‘__,i___.
E ° st £ o . Lo Te
& . —o ] o 0 2 oq ST
=28 . —ér___—.--' =28 _,{' ------
< £y -E’ e ° 3 -« ‘i -----
S P Aot e o S aa P
2261 _ M= 5 EEXE O e
& e °
24 2.4 .
L]
L]
22 22
.
2.0 2.0
136 138 14.0 14.2 14.4 14.6 148 15.0 136 138 14.0 142 14.4 146 14.8

log Magoc [Mo]

log M2goc [Mo]

* DESI-DR1 GAMA-DR4 spec-z

* TNG300-1 and TNG-Cluster

* Good agreement with the values
from TNG simulations

Radovich in prep.
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...and link to BCGs

NG (N=2914) Z=0.07 TNG (N=1390) Z=0.25
27{ o Wicovos s 0 271] o wpiata e E=02
— - NG fit (z=0.07) — - TNG fit (2=0.25) °

== TNG it (2=0.07, ref) = TNG fit (£0.07, ref)
2.6 I TNG median (16-84%)

2.6 I TNG median (16-84%)

A
”fﬁi * Scatter of the BCG stellar

I I
g 24 . g Pied o B g o . . .
s -~ ... o velocity dispersion
g
5 - B, oty (s 8 H i
3 ) - o
g .)%:;/ R, £ . increases with z
4 ind . .
224"
]
: suggesting an increased
2.1 ] . .
Mg ] dynamical complexity of
2.0 3 M
10.8 11.0 11.2 114 11.6 11.8 12.0 123 10.8 11.0 11.2 114 11.6 11.8 12.0 12.2
EED EED clusters at higher z
e | D == (seealsoSohn+2022, 2024)
3 @ AMICO+DESI (N=541) 3 @ AMICO+DESI (N®156)
-+ TNG fit (2=0.47) ° -+ TNG fit (2=0.72)
= = TNG fit (z=0.07, ref) = = TNG fit (z=0.07, ref) °
2.6+ I NG median (16-84%) > o % ° 1 2.6+ I NG median (16-84%) ° ° - ,/"
{"“ . o °o° <
& % cog | TR o loie
Q w2 ®o ® oo M eg
E E ®e 50 . .
~ £ & = 10 % °
- =24 s » "”, 2y '. = ®
5 é 3 ‘1"4." ~. .. . L)
g LR i el
22427 e%e, .
[ ]
21 L)
10.8 11.0 11.2 11.4 A8 11.8 12.0 122 2 O10.8 11.0 11.2 11.4 11.6 11.8 12.0 123
log M: gcg [Mo] log M gcg [Mo]

Radovich in prep.
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Cosmological
analysis
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Cosmological measure: counts

4000
3500
3000
2500
2000
1500
1000

500

z € [0.45, 0.80]
AT € [45, 60)

detectios
l0g10(A+)

g+(R)
I-H
J

0.001

: D?dD
0 01 02 03 04 05 06 07 08 09 l p

Qqy f s dy g dMed [+
N m = 7 = dM M, z Mob M .,
2 4 ’ dz wajh Mob \f{)‘ ’;( ) P( M)

R [h~*Mpc]

—14 1 T q
= -16 | ]
o E I ]
2 E ™ ]
= —-18 |- N
KiDS-North o r N q
= ]
= z -2o 1
g . = ]
: - — B [ ]
e hl'.- N - - = =20
1 = E Bl
Qo = ~ %J
=
S —24 [ 3
£y ™ W T ]
RA. [deg) C b
26 UL L L 1
12 15

1 4
Log(M [Mgh~t])
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Cosmology with galaxy clusters

- We look for large samples: large volumes, small masses,

- But what you want in the end is:

high z

1

0.95

0.9

0.75

.7

0.2 0.25 0.3 0.35

0.4 0.45

.5

0.55

w(a)=wy+(1—a)w,
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Cosmology with galaxy clusters

- We look for large samples: large volumes, small masses, high z

- But what you want in the end is:

1

0.95 -

0.85
0.8 |

0.75

0.7 L

~

0.2

0.25

0.3

0.35

0.4 0.45

.5

0.55

w(a)=wy+(1—a)w,
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Cosmology with galaxy clusters

- We look for large samples: large volumes, small masses, high z

- But what you want in the end is:

0.75

0.7 L

0.2

0.25

0.3

0.35

0.4 0.45

.5

0.55

w(a)=wy+(1—a)w,

Matteo Maturi

Back to Index

250



Cosmology, WS2025/26 20 Galaxy clusters cosmology

Sample statistical properties

Selection function: how many cluster do we miss? P (z_true, rich_true)
Sample purity: how many detections are fake? F (z_obs, rich_obs)

1) Validation with external data sets: X-ray, SZ, Spec-z
 sorted-2D Matching. Not trivial with high density of clusters
* Limited by sample selection of external sample

2) Numerical simulations
* Ground truth to compare with
* Cluster members in simlations are difficult

3) Injection in data
* Recipe for Member galaxies
* Plug at random in data

4) Data Driven approach
* Minimal assumptions
* exploiting the probabilistic memberships for mock construction
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SinFoniA (Selection Function extrActor)
Mock catalogues from data (Monte Carlo)

- Avoid numerical simulations

- Use the data as much as possible, stick to reality

- Produce mock catalogues with known field and cluster galaxies

- Run the detection algorithm and perform matching (similar to the CFCs)
- Purity, completeness, uncertainties on all quantities, ...

Data — ™ | Probability associations

4/\

Cluster members P>0 Field galaxies

'

Split in richness/z bins

Maturi et al. 2019

binl | | bin2 ... |BinN

'

Monte Carlo sampling P

cluster field

Catalogue of clusters
2 —* | Generate mock clusters Randomize positions

Random position shifts \ /

Mock catalogue

Matteo Maturi
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Mocks (data driven) + cluster finder

An example: one of the KiDS tiles Maturi et al. 2019
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Sample completeness

101 2=015
----- 2=0.325
, 0.8
v e FE0505
g _____
£0.6
+—
@
20.4
g0
©02 Sample purity
00 3.34 2.52 1.19 2.02 1.0
100 10t
i 2.11 1.06 1.80 A 0.8
1.69 0.93 E 1.59 4
— —_ = = 0.6
= = ﬁ ° Foy
51219 o 1.28 "'2080 ;137- g
< g g a 04"
1.81 0.87 0.67 1 831 1.15 A
0.45 4 0.94 0.2
) 0.04 0.72 0.0
Maturi et al. 2025 : 11
z z 4 z
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Cosmological measure: a sketch...

Qh » Zf+1 dV ,-W:.‘_E’”_I dMnh +00
New = : f dz — dMn(M,z) p(M°°|M) ,
2 dz Mmeb Mpob 0 T

Massl!!!

The mass is not an observable!
What we have is richness

Mass-observable scaling relation: M=m(rich,z)
Weak lensing measures (optical)

Cosmology — Scaling relation simultaneous fit
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Cosmological measure: joint modeling, counts_weak lensing

= 1010030 z € 1010030 = € 10.10,0.30)
x < (20, 40) A7 € (20, 65) T 27 e (65.210]
% i — ~—
WL oorl o T woea000 B s
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s 3
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. S
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__ 0.01 = = e S5
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b = s s
1000 700 €10.1.0.3) 24€103.045) | e 7.0 €10.45,0.81 = =
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- b N ¥ xiDs-1000 5 = 0.001 3
2 100 = = T
3 == {, n
-2 “Eg \i N - € (045, 0801 - € (045, 0801 - € (04s. 0801
3 10 3 5 A7 € 130, a5) A7 e 145/ 60) % 2" e 160, 2101
= ;3 k3 Tt
h LY R —— — 5 ¥
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T — e o S - 0.001 ¥ 1
| ol i H Ll R | [
g i S b,
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oa i 3 s o4 i 3 3 oa i z 3
E . 160 O o 35 45 e w0 o
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[“"’ v Pau(AL,, Az, A
NAL ,AZ _ _ clu( ob? 'ob) <Pbkg( Zob))
V(Ao Az = C,U(A,iob,Aﬂ,b) dr Fepanr (8+.cen(R, AdGp. Azop)) = (NGAT,. Azon)) x

dn( Ma -utr) dn(M.
X dM ————— B (M) % ) n(M, zi)
f dM (D) Tinker et al.{(2008) > f dzr o0 dmdg fw M= Du=DX

= » % Costanzi et al. (2019
x f A, CotalAir 2i) PQUIM, 2) X (2019)

o x g+.cen(Rl€§Ia M, zy) fv d/l:r C.t:lu(/l » Zir) P(/l M, zip) X
0
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A, Az, A Azep

ob

Matteo Maturi Back to Index 256



Cosmology, WS2025/26

20 Galaxy clusters cosmology

Optical surveys are multi probes

DES Year 3 [Abbot et al. (2025)]
~5,000 deg?
* 16,000 redMaPPer clusters ze[0.2,0.7]

* Ner = 5.59 gal/arcmin? 0. = 0.261
* Blinding on posterior

* CL+GC: Clusters counts, clustering, lens
Galaxy clustering
Cross clustering clusters-galaxi

Sg =0.864 + 0.035
Qm = 0.265%0-019_ 45

K|DS 1000 [Lesci et al. (2025)]
839 deg?
* 8000 AMICO clusters z€[0.1,0.8]
* Counts + WL

Qm = 0.218*0'024—0.021
= 0.86%003,

Ss 0.74* 03

Abbot et al. (2025)

LI (B AN DR NN L S I (I
1.05 - KIDS DR3 | DES CL+GC ]
8 SDSS+HSC WL | 1.0 SPT clusters ]
DES CL+GC eRASS1 clusters ]
0.90 B ]
o ]
B |
0.75 F
KiDS-1000 |
060 H—+—+—+—F—+—+—+1 - - - 07—t
10.96 b
0.9F ]
0.7F
0.6 L . il R T
S 3 & 0§
Q N} Q Q
Qm
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A comparison between surveys

AMICO KiDS-1000 =
Cluster counts [=i . T = Compared to KiDS-DR3 cluster cosmology, the
/ \ uncertainties on ﬁm and o, are halved.
| - - . FoM in DR3: 700.
N FoM in DR4: 1680.
SD5S-DR8 S :
Cluster counts 8
DES-Y1 : -
Cluster counts 3 2.80 tension with P klﬁ
S~ Agreement with co: shear, except for KiDS-DR5.
Cms[e,im;“ —_—— —— - EE— Agreement with counts, except for eRASS1.
Gs'
General agreement with literature analyses.
L —— —_— ey S —
Q:
m
HSC-Y3 Cosmic shear| ——
4.50 disagreement with Planck18.
KiDS-1000 Cosmic shear —— _— 2.80 disagreement with eRASS1.
/ \\ Agreement with other cluster count analyses.
KiDS-Legacy Cosmic shear | ——
0.6 0.7 0.8 0.7 0.8 0.9 1.0 015 020 025 030 035
Sg = 0g(0n/0.3)05 Og 0

Lesci et al. (2025)

Fig. 12. Constraints on Sg (left panel), oy (middle panel), and Q,, (right panel) obtained, from top to bottom, in this work (blue), by Planck18
(orange), Lesci et al. (2022a) (grey), Costanzi et al. (2019) (green), Abbott et al. (2020) (red), Abbott et al. (2025) (dark blue), Bocquet et al.
(2019) (brown), Bocquet et al. (2024b) (violet), Ghirardini et al. (2024) (cyan), Secco et al. (2022) (pink), Dalal et al. (2023) (dark green), Asgari
et al. (2021) (black), and Wright et al. (2025b) (dark grey). The median as well as the 16th and 84th percentiles are shown.
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What next?

Or what now...
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J-PAS

* Javalambre Physics of the Accelerating

Universe Astrophysical Survey

H

A"\
Al

P,

Pathfinder@)ST

SDSS-DR12 g band

A nearly spectroscopic survey

OAJ
Observatorio Astrofisico de Javalambre

- Pico delBuitre of the Sierra de
Javalambre, Teruel, Spain (1957m)

- JST/T250 Telescope: 2.5m

- JPCam: 7 square degrees

- 56 narrow bands + u, g, r (22.75), i
- area: 8000 deg?

-g,~ 0.003 (1+2)

- Seeing (V band):
median 0.71” mode of 0.58”

Matteo Maturi
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S/N=3.23, z=0.08 0.03 T T T T T T T L

: 0.02 F o 3
‘__‘D- (=]

o o il

T 001 . . é ]

% il e Tl G ey Pt % P o]

& oF---g----- @ ..“ = = - --8- .°Q.-._'

Pyt Py

Q o4

g o0 f ® ]

K ? 1

0= 0.0037(1+2) E

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8

Zpp

z<0.25 —o—
10 | 0.25<z<0.56 —@— .
z>0.56 & Er
masked=30%
interlopers

0 0.1 0z 03 04

z

0.5 0.6 o7 0.8

) 0.1 1
SIN=4.01, z=0.27 SIN=3.85, z=0.68 Maturi et al. (2023) M200¢ [10™ Mayr]
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Euclid

Wide field: 15.000 deg?
- 12 billions sources (1.5 billion for lensing)
- 35 million spectroscopic redshifts of galaxies
- We expect 2 10° clusters (Sartoris et al. 2016)

Deep field: 40 deg? (2 mag deeper)
- 10 million sources (1.5 million for lensing)
- 150 000 spectroscopic redshifts of galaxies
- Fornaz 12.1deg? (Pierre, XMM 40ks)
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Intracluster light
ERO, Abel 2390 -
Ellien et al. (2025)
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Strong lensing on an industrial scale
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. COSMOS-Web |
. 'NIRCam footprint
- (054 deg?)

COSMOS-Web [ -

. - cosmos ;
H_ubb!e!AG.S F814w .

. COSMOS-Web
. -MIRI footprints. -
. (0.18deg?) .
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COSMOS-Web galaxy groups:
Evolution of red sequence and quiescent galaxy fraction
Toni et al. et al (2025b)

average color

The COSMOS-Web deep galaxy group catalog up to z = 3.7
Toni et al. et al (2025a)
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Clusters are a “multi-probe” probe

Cluster counts

Clustering of galaxy clusters
Cluster structural properties
Standard ruler...

Strong lensing time delays (e.g. Refstad SN)
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Statistics: basics
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